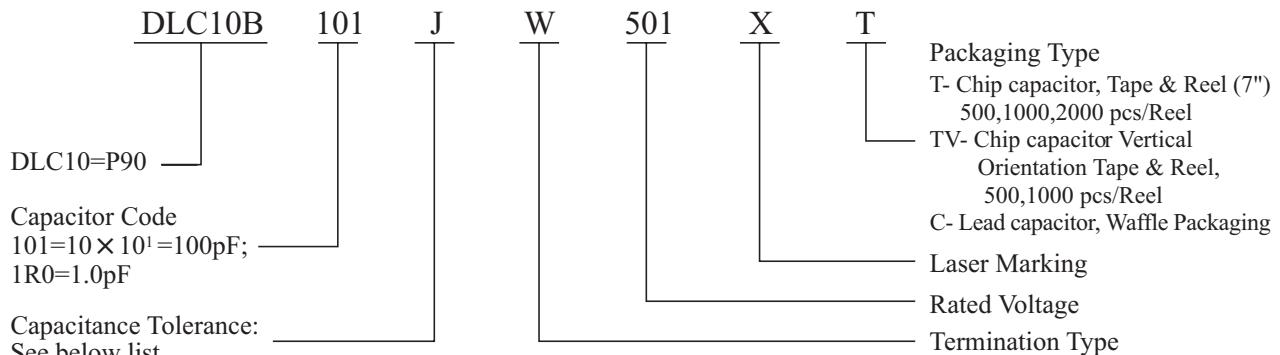


DLC10B (.110" x .110")
◆ Product Features

High Q, High Power, Low ESR/ESL, Low Noise, High Self-Resonance,
Ultra- Stable Performance.

◆ Product Application

Typical Functional Applications: Bypass, Coupling, Tuning, Feedback, Impedance Matching and D.C. Blocking.


Typical Circuit Applications: UHF/Microwave RF Power Amplifiers, Mixers, Oscillators, Low Noise Amplifiers,
Filter Networks, Timing Circuits and Delay Lines

◆ DLC10B Capacitance Table

Cap.pF	Code	Tol.	Rated WVDC	Cap.pF	Code	Tol.	Rated WVDC	Cap.pF	Code	Tol.	Rated WVDC	Cap.pF	Code	Tol.	Rated WVDC
0.1	0R1			3.6	3R6			43	430			510	511		
0.2	0R2	A, B		3.9	3R9			47	470			560	561		100V
0.3	0R3			4.3	4R3			51	510			620	621	F, G, 101 or J	Code
0.4	0R4			4.7	4R7			56	560			680	681		101
0.5	0R5			5.1	5R1	A,		62	620			750	751		200V
0.6	0R6			5.6	5R6	B, C, D		68	680			820	821		Code
0.7	0R7			6.2	6R2			75	750			910	911		201
0.8	0R8			6.8	6R8			82	820			1000	102		
0.9	0R9	500V		7.5	7R5		500V	91	910						
1.0	1R0	Code		8.2	8R2		Code	100	101						
1.1	1R1	501 or 1500V		9.1	9R1		501 or 1500V	110	111	F, G, J	300V				
1.2	1R2			10	100			120	121						
1.3	1R3	A, Code		11	110			130	131						
1.4	1R4	B, 152		12	120		152	150	151						
1.5	1R5	C, D		13	130			160	161						
1.6	1R6			15	150			180	181						
1.7	1R7			16	160			200	201						
1.8	1R8			18	180	F, G, J		220	221						
1.9	1R9			20	200			240	241		200V				
2.0	2R0			22	220			270	271		Code				
2.1	2R1			24	240			300	301		201				
2.2	2R2			27	270			330	331		or 600V				
2.4	2R4			30	300			360	361		Code				
2.7	2R7			33	330			390	391		601				
3.0	3R0			36	360			430	431						
3.3	3R3			39	390			470	471						

Dalicap

DALICAP TECH. CORPORATION

DLC10B High Q. RF/Microwave Multilayer Chip Ceramic**DLC10B(.110" x.110")****◆ Part Numbering**

Code	A	B	C	D	F	G	J
Tolerance	$\pm 0.05\text{pF}$	$\pm 0.1\text{pF}$	$\pm 0.25\text{pF}$	$\pm 0.5\text{pF}$	$\pm 1\%$	$\pm 2\%$	$\pm 5\%$

Note: Tolerance of $\pm 0.02\text{pF}$ is a possibility. Please contact Dalicap**◆ DLC10B Capacitor Dimensions**

unit:inch(millimeter)

Series	Term. Code	Type / Outlines	Capacitor Dimensions				Lead Dimensions			Plated Material
			Length (L _c)	Width (W _c)	Thick. (T _c)	Overlap (B)	Length (L _L)	Width (W _L)	Thickness (T _L)	
10B	W	Chip	.110+.020 to -.010 (2.79+.51 to -.25)	.110 ± .010 (2.79 ±.25)	.10 (2.54) max	.024 (0.60) max	—	—	—	100% Sn over Nickel Plating
	L									90 Sn10Pb over Nickel Plating
10B	MS	Microstrip	.135 ± .015 (3.43 ±.038)	.110 ± .010 (2.79 ±.25)	.10 (2.54) max	—	.250 (6.35) min	.093 ± .005 (2.36 ±.013)	.008± .001 (0.2± 0.025)	Silver-plated Copper
									.004± .001 (0.1± 0.025)	100% Silver

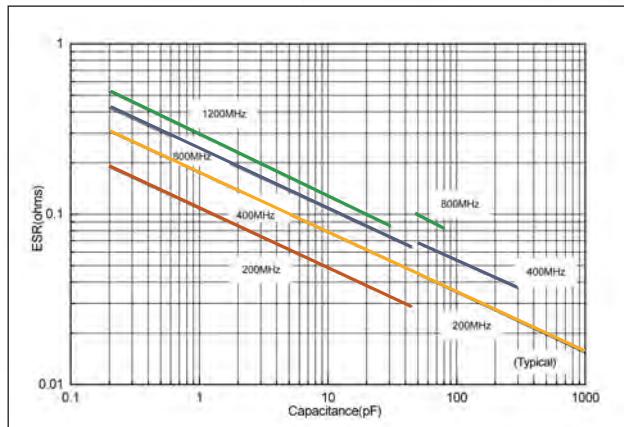
Series	Term. Code	Type / Outlines	Capacitor Dimensions				Lead Dimensions			Plated Material
			Length (L _c)	Width (W _c)	Thick. (T _c)	Overlap (B)	Length (L _L)	Width (W _L)	Thickness (T _L)	
10B	P	Chip (Non-Magnetic)	.110+.020 to -.010 (2.79+.51 to -.25)	.110 ± .010 (2.79 ±.25)	.10 (2.54) max	.024 (0.60) max	—	—	—	100% Sn over Copper Plating RoHS Compliant
10B	MN	Microstrip (Non-Magnetic)	.135 ± .015 (3.43 ±.038)	.110 ± .010 (2.79 ±.25)	.10 (2.54) max	—	.250 (6.35) min	.093 ± .005 (2.36 ±.013)	.008± .001 (0.2± 0.025)	Silver-plated Copper
									.004± .001 (0.1± 0.025)	100% Silver

Note: non-mag is no magnetism.

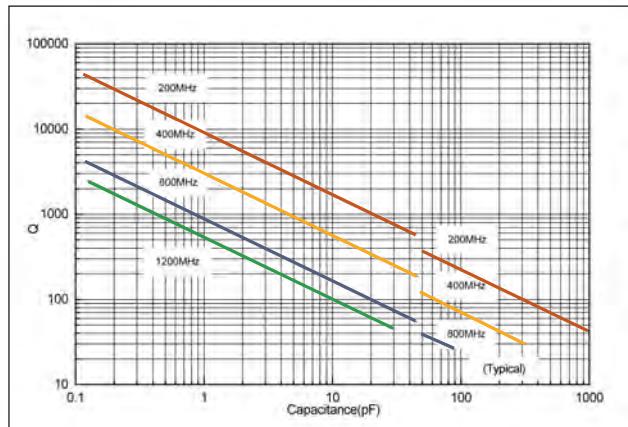
◆ Performance

Item	Specifications
Quality Factor (Q)	greater than 10,000 at 1 MHz
Insulation Resistance (IR)	0.1 pF to 470 pF: 10 ⁶ Megohms min. @ +25°C at rated WVDC. 10 ⁵ Megohms min. @ +125°C at rated WVDC. 510 pF to 1000 pF: 10 ⁵ Megohms min. @ +25°C at rated WVDC. 10 ⁴ Megohms min. @ +125°C at rated WVDC.
Rated Voltage	See Rated Voltage Table
Dielectric Withstanding Voltage (DWV)	250% of Rated Voltage for 5 seconds, Rated Voltage ≤ 500VDC 150% of Rated Voltage for 5 seconds, 500VDC < Rated Voltage ≤ 1250VDC 120% of Rated Voltage for 5 seconds, Rated Voltage > 1250VDC
Operating Temperature Range	-55°C to +200°C.
Temperature Coefficient (TC)	+90 ± 20 ppm/°C (-55°C to +125°C);
Capacitance Drift	± 0.02% or ± 0.02pF, whichever is greater.
Piezoelectric Effects	None
Termination Type	See Termination Type Table

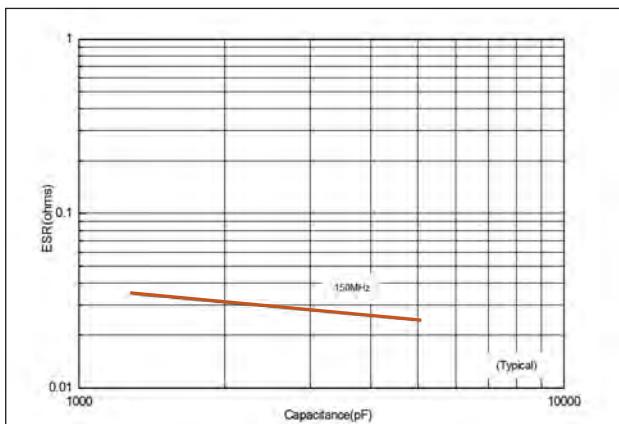
Capacitors are designed and manufactured to meet the requirements of MIL-PRF-55681 and MIL-PRF-123.

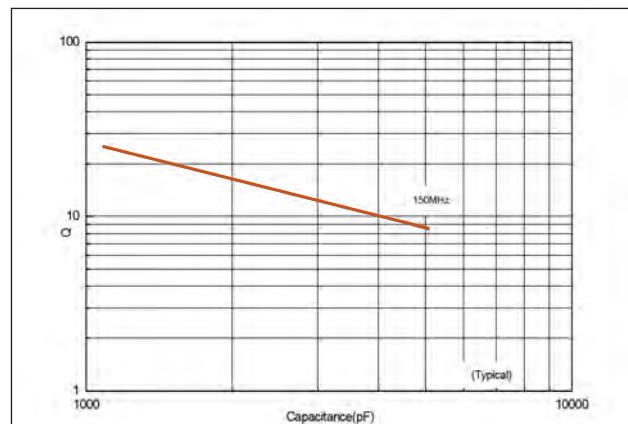

◆ Environmental Tests

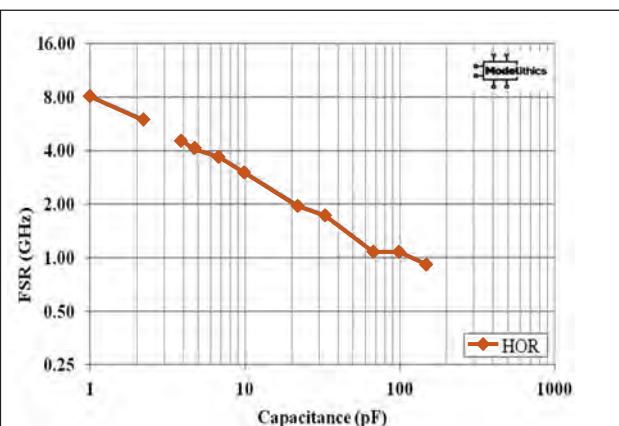
Item	Specifications	Method
Thermal Shock	DWV: the initial value IR: Shall not be less than 30% of the initial value Capacitance change: no more than 0.5% or 0.5pF, whichever is greater.	MIL-STD-202, Method 107, Condition A. At the maximum rated temperature (-55°C and 200°C) stay 30 minutes. The time of removing shall not be more than 3 minutes. Perform the five cycles.
Moisture Resistance		MIL-STD-202, Method 106.
Humidity (steady state)	DWV: the initial value IR: the initial value Capacitance change: no more than 0.3% or 0.3pF, whichever is greater.	MIL-STD-202, Method 103, Condition A, with 1.5 Volts D.C. applied while subjected to an environment of 85°C with 85% relative humidity for 240 hours minimum.
Life	IR: Shall not be less than 30% of the initial value Capacitance change: no more than 2.0% or 0.5pF, whichever is greater.	MIL-STD-202, Method 108, for 2000 hours, at 200°C. 200% of Rated Voltage for Capacitors, Rated Voltage ≤ 500VDC 120% of Rated Voltage for Capacitors, 500VDC < Rated Voltage ≤ 1250VDC 100% of Rated Voltage for Capacitors, Rated Voltage > 1250VDC



◆ **DLC10B Performance Curve**


ESR vs Capacitance

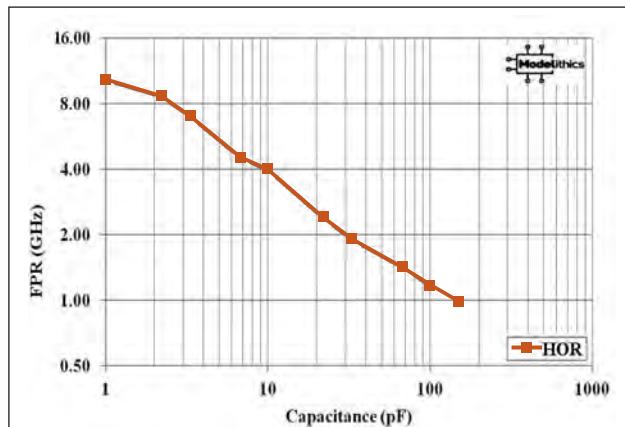

Q vs Capacitance


ESR vs Capacitance

Q vs Capacitance

DLC10B Horizontal First Series Resonance(FSRs)

Definitions and Measurement Conditions

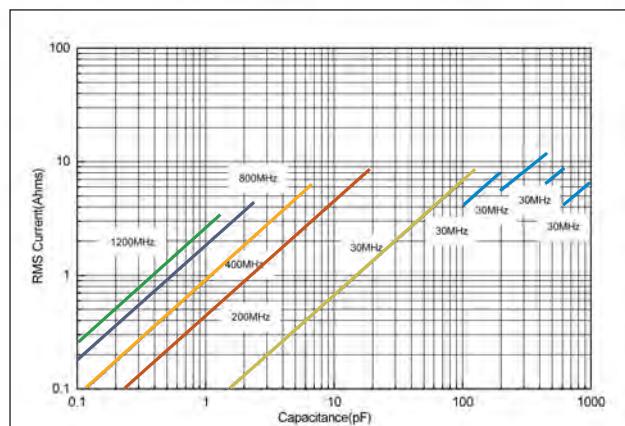

For a capacitor in a series configuration, i.e., mounted across a gap in a microstrip trace, with 50-Ohm source and termination resistances, the First Series Resonance, FSR, is defined as the lowest frequency at which the imaginary part of the input impedance, $\text{Im}[\text{Zin}]$, equals zero. Should $\text{Im}[\text{Zin}]$ or the real part of the input impedance, $\text{Re}[\text{Zin}]$, not be monotonic with frequency at frequencies lower than those at which $\text{Im}[\text{Zin}] = 0$, the FSR shall be considered as undefined (gap in plot above). FSR is dependent on internal capacitor structure; substrate thickness and dielectric constant; capacitor orientation, as defined above; and mounting pad dimensions.

The measurement conditions are: substrate -- Rogers RO4350; substrate dielectric constant = 3.66; horizontal mount substrate thickness (mils) = 50; gap in microstrip trace (mils) = 72; horizontal mount microstrip trace width (mils) = 110. Reference planes at sample edges.

All data has been derived from electrical models created by Modelithics, Inc., a specialty vendor contracted by DLC. The models are derived from measurements on a large number of parts disposed on several different substrates.

◆ DLC10B Performance Curve

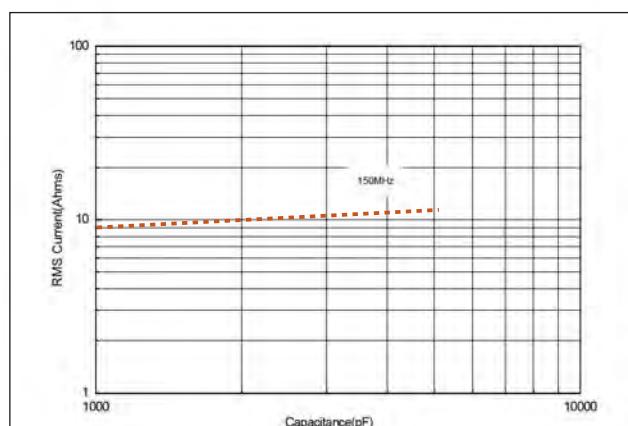
DLC10B Horizontal First Parallel Resonance(FPRs)


Definitions and Measurement conditions:

For a capacitor in a series configuration, i.e., mounted across a gap in a microstrip trace, with 50-Ohm source and termination resistances, the First Parallel Resonance, FPR, is defined as the lowest frequency at which a suckout or notch appears in $|S_{21}|$. It is generally independent of substrate thickness or dielectric constant, but does depend on capacitor orientation. A horizontal orientation means the capacitor electrode planes are parallel to the plane of the substrate; a vertical orientation means the electrode planes are perpendicular to the substrate.

The measurement conditions are: substrate -- Rogers RO4350; substrate dielectric constant = 3.66; horizontal mount substrate thickness (mils) = 50; gap in microstrip trace (mils) = 72; horizontal mount microstrip trace width (mils) = 110. Reference planes at sample edges.

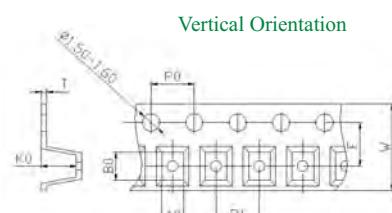
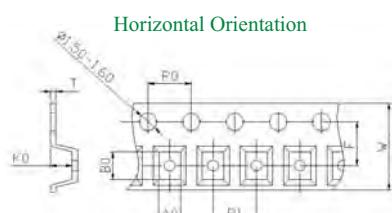
All data has been derived from electrical models created by Modelithics, Inc., a specialty vendor contracted by DLC. The models are derived from measurements on a large number of parts disposed on several different substrates.


Current Rating vs Capacitance

The current depends on voltage limited: $I = \frac{\sqrt{2}}{2} I_{peak} = \frac{\sqrt{2}}{2} \times \frac{V_{rated}}{X_C} = \sqrt{2} \pi f C V_{rated}$

The current depends on power dissipation limited: $I = \sqrt{\frac{P_{dissipation}}{ESR}}$

Current Rating vs Capacitance



Note: If the thermal resistance of mounting surface is $20^\circ\text{C}/\text{W}$.

then a power dissipation of 3 W will result in the current limited

we can calculate the current limited $I = \sqrt{\frac{P_{dissipation}}{ESR}}$

◆ Tape & Reel Specifications

Orientation	EIA	A0	B0	K0	W	P0	P1	T	F	Qty/reel	Tape Material
Horizontal	1111	2.85	3.90	1.95	8.00	4.00	4.00	0.22	3.50	2000	Plastic
Vertical	1111	2.00	3.50	2.70	12.00	4.00	4.00	0.40	5.50	1500	Plastic
Vertical	1111	2.96	3.60	2.40	8.00	4.00	4.00	0.22	3.50	1500	Plastic

◆ Design Kits

These capacitors are 100% RoHS. Kits are available in Magnetic and Non-Magnetic that contain 10(ten) pieces per value.

Design Kit	Description (pF)	Values (pF)	No. of values	Tolerance
DKDLC10B01	1.0 - 10	1.0, 1.2, 1.5, 1.8, 2.0, 2.2, 2.4, 2.7	16	± 0.10pF
		3.0, 3.3, 3.9, 4.7, 5.6, 6.8, 8.2		± 0.25pF
		10		± 5%
DKDLC10B02	10 - 100	10, 12, 15, 18, 20, 22, 24, 27, 30, 33, 39, 47, 56, 68, 82, 100	16	± 5%
DKDLC10B03	100 - 1000	100, 120, 150, 180, 200, 220, 240, 270, 300, 330, 390, 470, 560, 680, 820, 1000	16	± 5%
DKDLC10B05	1.0 - 10 Non-magnetic	1.0, 1.2, 1.5, 1.8, 2.0, 2.2, 2.4, 2.7,	16	± 0.10pF
		3.0, 3.3, 3.9, 4.7, 5.6, 6.8, 8.2		± 0.25pF
		10		± 5%
DKDLC10B06	10 - 100 Non-magnetic	10, 12, 15, 18, 20, 22, 24, 27, 30, 33, 39, 47, 56, 68, 82, 100	16	± 5%
DKDLC10B07	100 - 1000 Non-magnetic	100, 120, 150, 180, 200, 220, 240, 270, 300, 330, 390, 470, 560, 680, 820, 1000	16	± 5%

