

CDMA/FM LOW NOISE AMPLIFIER/M

Typical Applications

- CDMA/FM Cellular Systems
- Supports Dual-Mode AMPS/CDMA
- Supports Dual-Mode TACS/CDMA
- General Purpose Down Converter
- Commercial and Consumer Systems
- Portable Battery Powered Equipment

Product Description

The RF9906 is a receiver front-end designed for the receive section of dual-mode CDMA/FM cellular applications. It is designed to amplify and down-convert RF signals while providing 9dB of gain control range. Noise Figure, IP3, and other specs are designed to be compatible with the IS-95 Interim Standard for CDMA cellular communications. This circuit is designed as part of the RFMD CDMA Chip Set, consisting of this Receive LNA/ Mixer, a Receive IF AGC Amp, a Transmit IF AGC Amp, and a Transmit Upconverter. The IC is manufactured on an advanced Gallium Arsenide Heterojunction Bipolar Transistor (HBT) process, and is packaged in a standard miniature 24-lead plastic SSOP package.

Optimum Technology Matching® Applied

Functional Block Diagram

Package Style: SSOP-24

Features

- Complete Receiver Front-End
- Analog Gain Control
- Single 3.6V Power Supply
- Buffered LO Output
- Digitally Selectable IF Outputs
- 500MHz to 1500MHz Operation

Ordering Information

RF9906 RF9906 PCBA

CDMA/FM Low Noise Amplifier/Mixer Fully Assembled Evaluation Board

RF Micro Devices. Inc. 7625 Thorndike Road Greensboro, NC 27409, USA http://www.rfmd.com

Tel (336) 664 1233 Fax (336) 664 0454

Absolute Maximum Ratings

Parameter	Rating	Unit
Supply Voltage	-0.5 to +5.0	V _{DC}
Input LO and RF Levels	+3	dBm
Operating Ambient Temperature	-40 to +85	°C
Storage Temperature	-40 to +150	°C

RF Micro Devices believes the furnished information is correct and accurate at the time of this printing. However, RF Micro Devices reserves the right to make changes to its products without notice. RF Micro Devices does not assume responsibility for the use of the described product(s).

Parameter	Specification		Unit	Condition	
Farameter	Min.	Тур.	Max.	Unit	Condition
Overall					$T = 25 \degree C, V_{CC} = 3.6 V, RF = 881 MHz,$
					LO=966MHz @ -5dBm
RF Frequency Range		500 to 1500		MHz	
LO Frequency Range		500 to 1500		MHz	
IF Frequency Range		0.1 to 250		MHz	
Cascaded Performance to					CDMA Mode, IF SEL.=2.9V, 1kΩ balanced load, 2.5dB Image Filter Loss.
IF1					By varying the gain of the second stage, a
					trade-off of gain and noise figure against IP3 can be made.
Cascade Conversion Gain, Maxi- mum	27.5	30	33	dB	$V_{G} \leq 0.2 V$
Cascade Conversion Gain, Mini- mum		21		dB	$V_{G} \ge 2.5 V$
Cascade IP3	-15	-13		dBm	Referenced to input at Maximum Gain
Cascade Noise Figure		2.6	3.4	dB	Single sideband, at Maximum Gain Setting
Cascaded Performance to					FM Mode, IF SEL.=0V, 850Ω load, 2.5dB Image Filter Loss.
IF2					By varying the gain of the second stage, a trade-off of gain and noise figure against IP3 can be made.
Cascade Conversion Gain, Maxi- mum	18.5	21	24	dB	V _G ≤0.2V
Cascade Conversion Gain, Mini- mum		12		dB	V _G ≥2.5V
Cascade IP3	-15	-12.5		dBm	Referenced to input at Maximum Gain
Cascade Noise Figure		3.0	4.0	dB	Single sideband, at Maximum Gain Setting
First Section (LNA)					The LNA section may be left unused. Power is not connected to pin 1. The performance is then as specified for the Second Section (Mixer).
Noise Figure		1.5		dB	
Input VSWR		<1.5:1			
Input IP3		-8		dBm	
Gain		16		dB	
Reverse Isolation		23		dB	
Output VSWR		<1.5:1			

RF9906

					With $1 k\Omega$ balanced load.	
Second Section (Mixer, IF1 Output)					By varying the gain of the second stage, a trade-off of gain and noise figure against IP3	
					can be made. Please see data plots.	
Noise Figure		9.5		dB	Single Sideband	
Input VSWR		1.5:1			Single-ended	
Input IP3		+2		dBm	At maximum gain	
Conversion Gain, Maximum		16.5		dB	V _G ≤0.2V	
Conversion Gain, Minimum		5.5		dB	V _G ≥2.5V	
Output Impedance		1		kΩ	Balanced	
					With 850 Ω load.	
Second Section (Mixer, IF2 Output)					By varying the gain of the second stage, a trade-off of gain and noise figure against IP3 can be made. Please see data plots.	
Noise Figure		11		dB	Single Sideband	
Input VSWR		1.5:1			Single ended	
Input IP3		+2		dBm	At maximum gain	
Conversion Gain, Maximum		7.5		dB	V _G ≤0.2V	
Conversion Gain, Minimum		-4.5		dB	V _G ≥2.5V	
Output Impedance		850		Ω	Single ended	
LO Input						
LO Input Range		-6 to 0		dBm		
LO Output Level	-7.5	-5	-2.5	dBm	Buffer On, -5dBm input	
LO Output Level		-35	-30	dBm	Buffer Off, -5dBm input	
LO to RF (Mix In) Rejection		27		dB		
LO to IF1, IF2 Rejection		20		dB		
LO Input VSWR		<2:1			Single ended	
Power Supply						
Voltage		3.6±5%		V		
Current Consumption		7	50	mA	LNA only	
		41.5	58	mA	LNA + Mixer, IF1, LO Buffer On	
		39	55	mA	LNA + Mixer, IF1, LO Buffer Off	
		32.5	45	mA	LNA + Mixer, IF2, LO Buffer On	
		30	42	mA	LNA + Mixer, IF2, LO Buffer Off	

RF9906

Pin	Function	Description	Interface Schematic
1	VCC1	Supply voltage for the LNA. External RF and IF bypassing is required. The trace length between the pin and the bypass capacitors should be minimized. The ground side of the bypass capacitors should connect immediately to ground plane.	
2	GND	Ground connection. Keep traces physically short and connect immedi- ately to ground plane for best performance.	
3	LNA IN	RF input pin. This pin is internally DC blocked and matched to 50 Ω .	
4	GND	Same as pin 2.	
5	IF2	FM IF output pin. This is a single-ended output with an output impedance set by an internal 850 Ω resistor to V_{CC} . The resistor sets the operating impedance, but an external choke or matching inductor to V_{CC} must be supplied in order to correctly bias this output. This inductor is typically incorporated in the matching network between the output and IF filter. Because this pin is biased to V_{CC} , a DC blocking capacitor must be used if the IF filter input has a DC path to ground.	
6	GND	Same as pin 2.	
7	IF SELECT	Selects which IF output (IF1 or IF2) is used. This is a digitally controlled input. A logic "high" selects IF1. A logic "low" selects IF2. The threshold voltage is approximately 1.3V.	SELECT O
8	GND	Same as pin 2.	
9	IF 1+	CDMA IF output pin. This is a balanced output. The output impedance is set by an internal 500 Ω resistor to V_{CC} . Thus the output impedance of each pin is 500 Ω , whereas the differential output impedance is 1000 Ω . The resistor sets the operating impedance, but an external choke or matching inductor to V_{CC} must be supplied in order to correctly bias this output. This inductor is typically incorporated in the matching network between the output and IF filter. Because this pin is biased to V_{CC} , a DC blocking capacitor must be used if the IF filter input has a DC path to ground.	IF1+ 500 Ω 500 Ω 500 Ω 4 500 Ω 500 Ω 500 Ω 500 Ω 500 Ω
10	IF 1-	Same as pin 9 except complementary input.	See pin 9.
11	GC	Analog gain adjustment for both IF output buffer amplifiers. A $10k\Omega$ source impedance is required for proper operation of the gain control circuitry. Valid control voltages, on the source side of the $10k\Omega$ resistor, are from 0V to 2.9V. Minimum gain is selected with 2.4V to 2.9V. Maximum gain is selected with 0V to 0.2V. When operating the RF9906 at fixed maximum gain, this pin should be grounded through a $10k\Omega$ resistor. Do not connect this pin directly to ground (see Application Schematic for example).	
12	VCC2	Supply Voltage for the Mixer, LO Buffer Amplifier, and IF Buffer Amplifiers. External RF and IF bypassing is required. The trace length between the pin and the bypass capacitors should be minimized. The ground side of the bypass capacitors should connect immediately to ground plane.	
13	LO IN+	Mixer LO Balanced Input Pin. This pin is internally DC biased and should be DC blocked if connected to a device with DC present. For single-ended input operation, one pin is used as an input and the other mixer LO input is AC coupled to ground. The single-ended input impedance is 50Ω .	
14	LO IN-	Same as pin 13, except complementary input.	See pin 13.
	•		

RF9906

	r		
15	LO BUFFER ENABLE	Enable pin for the LO output buffer amplifier. This is a digitally con- trolled input. A logic "high" turns the buffer amplifier on, and the current consumption increases by 3mA (with -3dBm LO input). A logic "low" turns the buffer amplifier off. The threshold voltage is approximately 1.3V.	
16	LO BUFFER OUT	Optional Buffered LO Output. This pin is internally DC blocked and matched to 50Ω . The buffer amplifier is switched on or off by the voltage level at pin 15.	
17	GND	Same as pin 2.	
18	MIXER RF IN+	Mixer RF Balanced Input Pin. This pin is internally DC biased and should be DC blocked if connected to a device with DC present. For single-ended input operation, one pin is used as an input and the other mixer RF input is bypassed to ground. In order to minimize the mixer's noise figure, the bypass capacitor must be a low input impedance at the IF frequency. The single-ended input impedance is 50Ω .	
19	GND	Same as pin 2.	
20	MIXER RF IN-	Same as pin 18, except complementary input.	See pin 18.
21	GND	Same as pin 2.	
22	LNA OUT	LNA Output pin. This pin is internally DC blocked and matched to 50Ω in order to facilitate an easy interface to a 50Ω Image Filter.	See pin 3.
23	GND	Same as pin 2.	
24	BYPASS	IF circuitry bypass pin. This pin should be well bypassed at the IF fre- quency in order to achieve specified FM (IF2) noise figure. The ground side of the bypass capacitor should connect immediately to ground plane. 1000pF is the suggested value. Smaller values will begin to slightly degrade noise figure. Larger values will slow down the IF1 to IF2 switching times.	

Application Schematic

Evaluation Board Schematic

(Download Bill of Materials from www.rfmd.com.)

Evaluation Board Layout

Board Thickness 0.014"; Board Material FR-4 ????

