

RELEASE A DATA SHEET

GRF1201W LOG AVERAGE POWER DETECTOR 0.01 to 6 GHz

FEATURES

- Detector Slope: 0.08 volts per dB (-20 to +20)
- Linear Logarithmic Power Detector
- Flexible bias voltage
- Minimal external components
- Process: InGaP HBT
- RoHS Compliant

AEC-Q100 Grade 2 Qualified

- 100% Device Reflow at Assembly
- 100% Optical Die Inspection

M DESCRIPTION

The GRF1201W is a low-cost, logarithmic, average power detector IC designed for cost-sensitive applications in the 0.01 to 6 GHz frequency range.

The device is operated from a supply voltage range of 2.7 to 5 volts and housed in a $1.5 \times 1.5 \times 0.5 \text{ mm 6-pin plastic DFN}$ package.

Please consult with the GRF applications engineering team for technical support.

BLOCK DIAGRAM

APPLICATIONS

• High-volume, cost sensitive logarithmic power detector applications

ORDERING INFORMATION Buy it Now

RELEASE A DATA SHEET

Pin Out (Top View)

RELEASE A DATA SHEET

Pin Assignments

Pin	Name	Description	Note		
1, 2, 5	GND/NC	Ground or No Connect	No internal connection to die.		
3	RF_IN	RF_IN Detector RF Input An external DC block must be used.			
4	DC_Out	Detector DC Output	DC coupled to measure detected output power.		
6	V _{CC}	Supply Voltage Input	V _{CC} must be supplied through a choke to this pin.		
PKG BASE	GND	Ground	Provides DC and RF ground for detector, as well as thermal heat sink. Recommend multiple 8 mil vias beneath the package for optimal RF and thermal performance. Refer to evaluation board top layer graphic on schematic page.		

RELEASE A DATA SHEET

Absolute Ratings

Parameter	Symbol	Min.	Max.	Unit
Supply Voltage	V _{CC}	0	6	V
RF Input Power: Load VSWR < 2:1 Modulation: CW	P _{IN MAX}		22	dBm
RF Input Power: Load VSWR < 2:1 Modulation: LTE	P _{IN MAX}		18	dBm
Operating Temperature (Package Base)	T _{PKG BASE}	-40	105	°C
Maximum Channel Temperature (MTTF >10 ⁶ hours)	T _{MAX}		170	°C
Electrostatic Discharge				
Human Body Model	HBM	500		V
Storage				
Storage Temperature	T _{STG}	-65	150	°C
Moisture Sensitivity Level	MSL		1	

Caution! ESD Sensitive Device.

Exceeding Absolute Maximum Rating conditions may cause permanent damage.

Note: For additional information, please refer to Manufacturing Note MN-001 - Packaging and Manufacturing Information.

All Guerrilla RF products are provided in RoHS compliant lead (Pb)-free packaging. For additional information, please refer to the Certificate of RoHS Compliance.

RELEASE A DATA SHEET

Recommended Operating Conditions

Parameter	Symbol	Specification			Unit	Condition
Farameter	Symbol	Min.	Тур.	Max.	Onit	Condition
Supply Voltage	V _{CC}	0	5	6	V	
Operating Temperature Range	T _{PKG BASE}	-40		105	°C	
RF Frequency Range	FRF	0.01	2	6	GHz	Typical application schematic with external matching components (notes 1, 2).
RF_IN Port Impedance	Z _{RFIN}		50		Ω	Single-ended.
RF_Out Port Impedance	Z _{RFIN}		50		Ω	Single-ended.

Note 1: Operation outside of this range is possible, but with degraded performance of some parameters.

Note 2: Contact the Guerrilla RF Applications team for guidance on optimizing the tuning of the device for alternative bands.

RELEASE A DATA SHEET

Nominal Operating Parameters - General

The following conditions apply unless noted otherwise; typical application schematic, $V_{CC} = 5 \text{ V}$, 50 Ω system impedance, $F_{TEST} = 2 \text{ GHz}$, $T_{PKG HEAT SINK} = 25 \text{ °C}$. Evaluation board losses are included within the specifications.

Devenueter	Gumbal	Specification			11	Caraltter	
Parameter	Symbol	Min.	Тур.	Max.	Unit	Condition	
Test Frequency (50 ohm source)	F _{TEST}		2		GHz	V _{CC} = 5 V.	
DC_Out (no RF applied)	DC_Out		0.8		V		
DC_Out (-20 dBm RF Input Power)	DC_Out		1		V		
DC_Out (0 dBm RF Input Power)	DC_Out		2.6		V		
DC_Out (10 dBm RF Input Power)	DC_Out		3.5		V		
DC_Out (20 dBm RF Input Power)	DC_Out		4.3		V		
Detector Output Rise Time	T _{RISE}		200		ns		
Detector Output Fall Time	T _{FALL}		650		ns		
Supply Current	I _{CC}		7	9	mA	V _{CC} = 5 V.	
Maximum Die Temperature Package Heat Sink Temperature = 85 °C (infrared Scan).	T _{MAX}		96		°C	$V_{CC} = 5 V.$ Input matching resistor = 68 Ω . RF input power = 20 dBm.	
Thermal Data							
Thermal Resistance (Infrared Scan)	ο _{JC}		150		°C/W	On standard evaluation board (note 2).	

Note 2: MTTF > 10^{6} hours for T_j \leq 170 °C

RELEASE A DATA SHEET

GRF1201W Typical Operating Curves: Pin = -20 to +20 dBm

RELEASE A DATA SHEET

RELEASE A DATA SHEET

GRF1201W Detector Rise and Fall Times

RELEASE A DATA SHEET

GRF1201W Standard Evaluation Board Schematic

GRF1201W Evaluation Board Assembly Diagram

RELEASE A DATA SHEET

Component	Туре	Manufacturer	Family	Value	Package Size	Substitution
M1	Resistor	Various	5%	68 Ω	0402	ok
M2 (0.1 to 1 GHz)*	Capacitor	Murata	GRM	470 pF	0402	ok
M2 (0.4 to 2 GHz)*	Capacitor	Murata	GRM	100 pF**	0402	
M2 (2 to 5 GHz)*	Capacitor	Murata	GRM	10 pF	0402	ok
M2 (5 to 6 GHz)*	Capacitor	Murata	GRM	2.0 pF	0402	ok
M7	Capacitor	Murata	GRM	0.1 µF	0402	ok
M8	Capacitor	Murata	GRM	100 pF	0402	ok
M9	Resistor (jumper)	Various	5%	0 Ω	0402	ok
M11	Capacitor	Murata	GRM/GJM	100 pF	0402	ok
M12	Resistor (jumper)	Various	5%	0 Ω	0402	ok
M13	Resistor	Various	5%	10 kΩ	0402	ok
Evaluation Board	GRF400X_RevC					

GRF1201W Evaluation Board Assembly Diagram Reference: 5 V, 25 mA

*Note: M2 value is flexible and only needs to be a good RF short at the frequency of interest.

All other BOM components are not frequency dependent.

** Note: Standard evaluation board M2 value is 100 pF.

RELEASE A DATA SHEET

DFN 6 1.5x1.5mm Package Dimensions

RELEASE A DATA SHEET

DFN 6 1.5x1.5mm Suggested PCB Footprint (Top View)

RELEASE A DATA SHEET

Package Marking Diagram

Line 1: "Y" = YEAR (single digit). "WW" = WORK WEEK and "w" = W for automotive. Line 2: "XXXX" = Device Part Number.

Tape and Reel Information

Guerrilla RF's tape and reel specification complies with Electronics Industries Association (EIA) standards for "Embossed Carrier Tape of Surface Mount Components for Automatic Handling" (reference EIA-481). Devices are loaded with pins down into the carrier pocket with protective cover tape and reeled onto a plastic reel. Each reel is packaged in a cardboard box. There are product labels on the reel, the protective ESD bag, and the outside surface of the box. For the latest reel specifications and package information (including units/reel), please visit Package Manufacturing Information | Guerrilla RF (guerrilla-rf.com).

Tape and Reel Packaging with Reel Diameter Noted (D)

Carrier Tape Width (W), Pitch (P), Feed Direction and Pin 1 Quadrant Information

RELEASE A DATA SHEET

Revision History

Revision Date	Description of Change			
June 15, 2021	Release Ø Data Sheet.			
October 15, 2021 Release A Data Sheet.				
February 14, 2022	Upgraded Data Sheet to new format only.			
February 12, 2024	Upgraded Data Sheet to newest format only.			
March 21, 2024	Added Thermal Resistance specification.			
May 28, 2025 Extended lower frequency range from 100 MHz to 10 MHz.				

RELEASE A DATA SHEET

Data Sheet Classifications

Data Sheet Status	Notes
Advance	S-parameter and NF data based on EM simulations for the fully packaged device using foundry-supplied transistor S-parameters. Linearity estimates based on device size, bias condition and experience with related devices.
Preliminary	All data based on evaluation board measurements taken within the Guerrilla RF Applications Lab. Any MIN/MAX limits represented within the data sheet are based solely on <i>estimated</i> part-to-part variations and process spreads. All parametric values are subject to change pending the collection of additional data.
Release Ø	All data based on measurements taken with <i>production-released</i> material. TYP values are based on a combination of ATE and bench-level measurements, with MIN/MAX limits defined using <i>modelled estimates</i> that account for part-to-part variations and expected process spreads. Although unlikely, future refinements to the TYP/MIN/MAX values may be in order as multiple lots are processed through the factory.
Release A-Z	All data based on measurements taken with production-released material <i>derived from multiple lots which have been fabricated over an extended period of time</i> . MIN/MAX limits may be refined over previous releases as more statistically significant data is collected to account for process spreads.

Information in this data sheet is specific to the Guerrilla RF, Inc. ("Guerrilla RF") product identified.

This data sheet, including the information contained in it, is provided by Guerrilla RF as a service to its customers and may be used for informational purposes only by the customer. Guerrilla RF assumes no responsibility for errors or omissions on this data sheet or the information contained herein. Information provided is believed to be accurate and reliable, however, no responsibility is assumed by Guerrilla RF for its use, nor for any infringement of patents, or other rights of third parties, resulting from its use. Guerrilla RF assumes no liability for any data sheet, data sheet information, materials, products, product information, or other information provided hereunder, including the sale, distribution, reproduction or use of Guerrilla RF products, information or materials.

No license, whether express, implied, by estoppel, by implication or otherwise granted by this data sheet for any intellectual property of Guerrilla RF, or any third party, including without limitation, patents, patent rights, copyrights, trademarks, and trade secrets. All rights are reserved by Guerrilla RF.

All information herein, products, product information, data sheets, and data sheet information are subject to change and availability without notice. Guerrilla RF reserves the right to change component circuitry, recommended application circuitry and specifications at any time without prior notice. Guerrilla RF may further change its data sheet, product information, documentation, products, services, specifications or product descriptions at any time, without notice. Guerrilla RF makes no commitment to update any materials or information and shall have no responsibility whatsoever for conflicts, incompatibilities, or other difficulties arising from any future changes.

GUERRILLA RF INFORMATION, PRODUCTS, PRODUCT INFORMATION, DATA SHEETS AND DATA SHEET INFORMATION ARE PROVIDED "AS IS" AND WITHOUT WARRANTY OF ANY KIND, WHETHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, INCLUDING FITNESS FOR A PARTICULAR PURPOSE OR USE, MERCHANTABILITY, PERFORMANCE, QUALITY OR NON-INFRINGEMENT OF ANY INTELLECTUAL PROPERTY RIGHT; ALL SUCH WARRANTIES ARE HEREBY EXPRESSLY DISCLAIMED. GUERRILLA RF DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. GUERRILLA RF SHALL NOT BE LIABLE FOR ANY DAMAGES, INCLUDING BUT NOT LIMITED TO ANY SPECIAL, INDIRECT, INCIDENTAL, STATUTORY, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS THAT MAY RESULT FROM THE USE OF THE MATERIALS OR INFORMATION, WHETHER OR NOT THE RECIPIENT OF MATERIALS HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Customers are solely responsible for their use of Guerrilla RF products in the Customer's products and applications or in ways which deviate from Guerrilla RF's published specifications, either intentionally or as a result of design defects, errors, or operation of products outside of published parameters or design specifications. Customers should include design and operating safeguards to minimize these and other risks. Guerrilla RF assumes no liability or responsibility for applications assistance, customer product design, or damage to any equipment resulting from the use of Guerrilla RF products outside of stated published specifications or parameters.