

NPN SILICON EPITAXIAL TRANSISTORS

CMBT3903 CMBT3904

SOT-23 SMD Package RoHS compliant

SOT-23

DEVICE MARKING

CMBT3903 = **1Y** CMBT3904 = **1A**

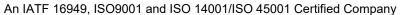
FEATURE

- 1. Low power loss, high efficiency,
- 2. Collector-to-base voltage (VCBO) of 60V,
- 3. Collector-to-emitter voltage (VCEO) of 40V,
- 4. High surge current capability.
- Complimentry of NPN CMBT3903 is PNP CMBT3905
 Complimentry of NPN CMBT3904 is PNP CMBT3906
- 6. This product is available in AEC-Q101 Compliant and PPAP Capable also.

Note: For AEC-Q101 compliant products, please use suffix -AQ in the part number while ordering.

APPLICATIONS

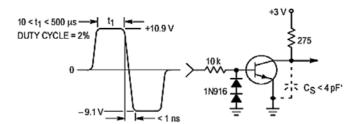
- 1. Telephony and professional communication equipment.
- 2. Medium Power Amplification and Switching applications.


An IATF 16949, ISO9001 and ISO 14001/ISO 45001 Certified Company

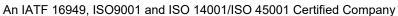
ABSOLUTE MAXIMUM RATINGS (Ta = 25 °C Unless otherwise specified)

PARAMETER		SYMBOL	VALUE	UNIT
Collector-base voltage (open emitter)		V_{CBO}	60	V
Collector–emitter voltage (open base)	Collector–emitter voltage (open base)		40	V
Emitter-base voltage (open collector)		V_{EBO}	6	V
Collector current (DC)		I _C	200	mA
Total power dissipation up to T _{amb} = 25°C		P_{tot}	250	mW
D.C. current gain at I _C = 10mA; V _{CE} = 1V	CMBT3903	h _{FE}	50 ~150	
D.C. current gain at I _C = 10mA; V _{CE} = 1V	CMBT3904	h_{FE}	100 ~ 300	
Transition frequency at f = 35MHz I _C = 10mA; V _{CE} = 20V			300	MHz
Total power dissipation up to T _{amb} = 25 °C		P_{tot}	250	mW
Storage temperature		T_{stg}	-55 to +150	°C
Junction temperature		T _i	150	°C

THERMAL RESISTANCE $T_i = P(R_{th j-t} + R_{th t-s} + R_{th s-a}) + T_{amb}$



ELECTRICAL CHARACTERISTICS at (Ta = 25 °C Unless otherwise specified)


DADAMETER	SYMBOL	TEST CONDITION	VALUE			UNIT
PARAMETER		TEST CONDITION	Min.	Тур.	Max	
Collector–emitter breakdown voltage	V _{(BR)CEO}	$I_{\rm C}$ = 1mA; $I_{\rm B}$ = 0	40			V
Collector–base breakdown voltage	V _{(BR)CBO}	$I_{\rm C} = 10 \mu \text{A}; I_{\rm E} = 0$	60			V
Emitter–base breakdown voltage	V _{(BR)EBO}	$I_E = 10\mu A; I_C = 0$	6			V
Collector cut-off current	I _{CEX}	$V_{CE} = 30V; V_{EB} = 3V$			50	nA
Output capacitance at f = 1 MHz	C _c	$I_E = 0; V_{CB} = 5V$			4	pF
Input capacitance at f = 1 MHz	C_e	$I_C = 0; V_{BE} = 0.5V$			8	pF
Base current with reverse biased emitter junction	I _{BEX}	V _{EB} = 3V; V _{CE} = 30V			50	nA
	V_{CEsat}	$I_{\rm C}$ = 10mA; $I_{\rm B}$ = 1mA			0.2	V
Cotymotion voltages	V _{CEsat}	$I_C = 50 \text{mA}; 1_B = 5 \text{mA}$			0.3	V
Saturation voltages	V _{BEsat}	$I_{\rm C}$ = 10mA; $I_{\rm B}$ = 1mA	0.65		0.85	V
	V_{BEsat}	$I_C = 50 \text{mA}; I_B = 5 \text{mA}$			0.95	V
				CMBT 3903	CMBT 3904	
	h _{FE}	$I_C = 0.1 \text{mA}; V_{CE} = 1 \text{V}$	Min.	20	40	
		$I_C = 1mA; V_{CE} = 1V$	Min.	35	70	
D.C. summert main		I _C = 10mA; V _{CE} = 1V	Min.	50	100	
D.C. current gain			Max.	150	300	
		$I_C = 50 \text{mA}; V_{CE} = 1 \text{V}$	Min.	30	60	
		$I_C = 100 \text{mA}; V_{CE} = 1 \text{V}$	Min.	15	30	1
Transition frequency at f = 100 MHz	f_{T}	$I_C = 10 \text{mA}; V_{CE} = 20 \text{V}$	Min.	250	300	MHz
Noise figure at $R_S = 1 \text{ k}\Omega$	F	F $I_C = 100 \text{mA}; V_{CE} = 5V$ f = 10Hz to 15,7kHz		6	5	dB
Small Signal Current Cain	h _{fe}	$V_{CE} = 10V; I_{C} = 1mA;$	Min.	50	100	
Small Signal Current Gain		f = 1KHz	Max.	200	400	

TEST CIRCUIT AND DIAGRAMS

Delay and Rise Time Equivalent Test Circuit

Typical Characteristic Curves

Fig 1: Capacitance

19
7.9
Gb3
3.9
Gb3
Gb3
AEVERSE BIAS (VCLTS)

Fig 4: Charge Data

Short VCC = 40 V
1046 - 10

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

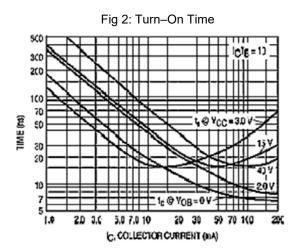
1000

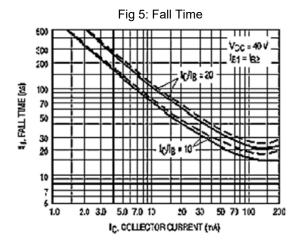
1000

1000

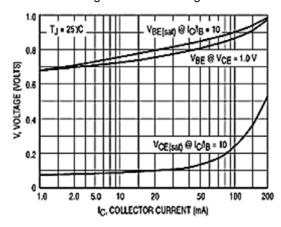
1000

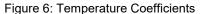
1000

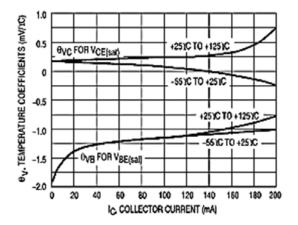

1000


1000

1000


1000


1000



Typical Characteristic Curves

Figure 7. DC Current Gain

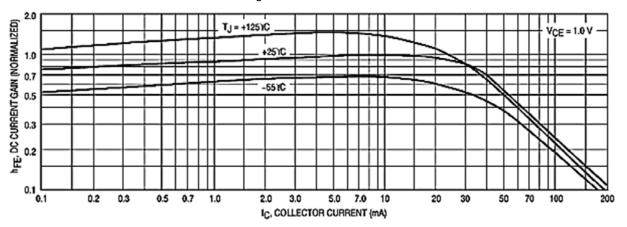
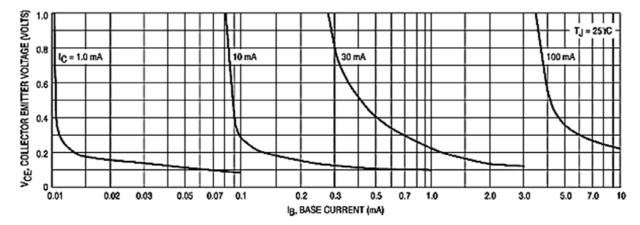
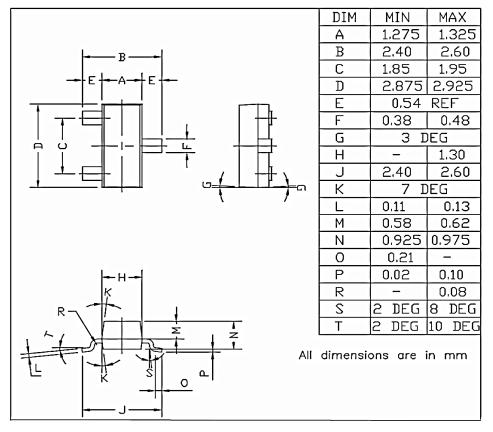
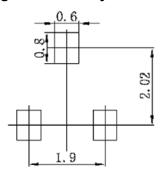



Figure 8. Collector Saturation Region





PACKAGE DETAILS

SOT-23 SMD Package

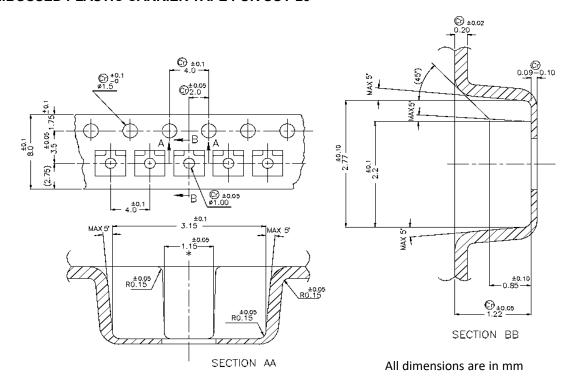
Suggested Pad Layout

Note:

- 1.Controlling dimension: in millimeters.
- 2.General tolerance:± 0.05mm.
- 3. The pad layout is for reference purposes only.

Pin Configuration

- 1. BASE
- 2. EMITTER
- 3. COLLECTOR

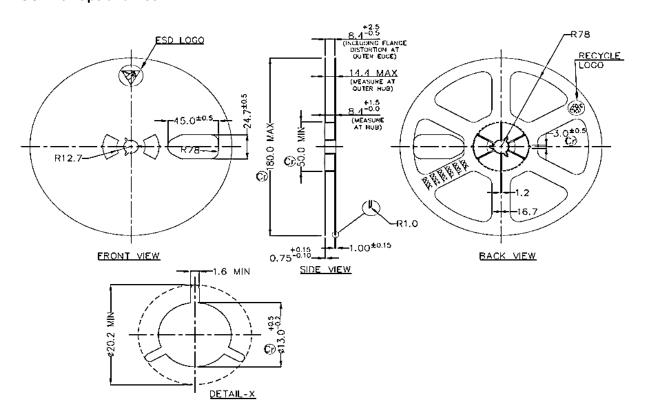


PACKING INFORMATION EMBOSSED PLASTIC CARRIER TAPE FOR SOT-23

NOTES:

- 1. The bandoier of 330mm reel contains at least 10,000 device.
- 2. The bandoier of 180mm reel contains at least 3,000 device.
- 3. No more than 0.5% missing device/reel 50 empty compartments for 330mm reel. 15 empty compartments for 180mm reel.
- 4. Three consecutive empty places might be found provided this gap is followed by 6 consecutive devices.
- 5. The carrier tape (leader) starts with at least 75 empty positions (equivalent to 330 mm). In order to fix the carrier tape a self adhesive tape of 20 to 50 mm is applied. At the end of the bandolier at least 40 empty positions (equivalent to 160 mm) are there.

Mechanical Data


- 1. Package Material: Molded Plastic. UL Flammability Classification Rating 94V-0
- 2. Polarity: Pls. see pin configuration
- 3 Weight: 0.008 grams (Approximate)

PACKING INFORMATION SOT-23 Tape and Reel

All Dimensions are in mm

Note: 13" Reel is also available.

Size of Tape	8mm	8mm
Size of reel	330mm (13")	180mm (7")
No. of Device	10,000 Pcs	3,000 Pcs

Packing Detail

SOT 23						
Package	Standard Pack		Inner Carton Box		Outer Box	
Fackage	Details	Net Weight/Qty	Size	Qty	Size	Qty
	3K/reel	110 gm/3K pcs	7.5" x 7.5" x 3"	18 K	18" x 9" x 9"	150 K
SOT 23			9" x 9" x 9"	60 K	18" x 12" x 9"	180 K
T&R					18" x 15" x 9"	240 K
IGIK					19" x 19" x 20"	480 K
	10K/reel	370 gm/10Kpcs	13.5" x 13.5" x 1"	20 K	13.5" x 13.5" x 6"	100 K

Recommended Reflow Solder Profiles

The recommended reflow solder profiles for Pb and Pb-free devices are shown below.

Figure 1 shows the recommended solder profile for devices that have Pb-free terminal plating, and where a Pb-free solder is used.

Figure 2 shows the recommended solder profile for devices with Pb-free terminal plating used with leaded solder, or for devices with leaded terminal plating used with a leaded solder.

Figure 1

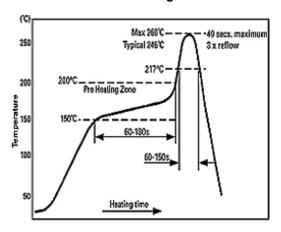
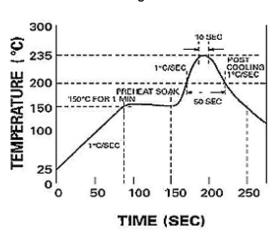
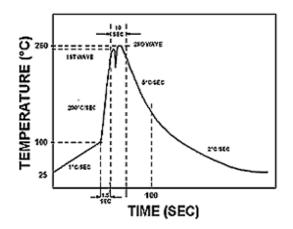
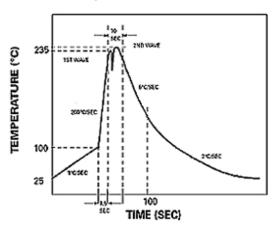



Figure 2

Reflow profiles in tabular form

Profile Feature	Sn-Pb System	Pb-Free System
Average Ramp-Up Rate	~3°C/second	~3°C/second
Preheat		
– Temperature Range	150-170°C	150-200°C
– Time	60-180 seconds	60-180 seconds
Time maintained above:		
– Temperature	200°C	217°C
– Time	30-50 seconds	60-150 seconds
Peak Temperature	235°C	260°C max.
Time within +0 -5°C of actual Peak	10 seconds	40 seconds
Ramp-Down Rate	wn Rate 3°C/second max. 6°C	





Recommended Wave Solder Profiles

The Recommended solder Profile For Devices with Pb-free terminal plating where a Pb-free solder is used

The Recommended solder Profile For Devices with Pb-free terminal plating used with leaded solder, or for devices with leaded terminal plating used with leaded solder

Wave Profiles in Tabular Form

Profile Feature	Sn-Pb System	Pb-Free System ~200°C/second	
Average Ramp-Up Rate	~200°C/second		
Heating rate during preheat	Typical 1-2, Max 4°C/sec	Typical 1-2, Max 4°C/Sec	
Final preheat Temperature	Within 125°C of Solder Temp	Within 125°C of Solder Temp	
Peak Temperature	235°C	260°C max.	
Time within +0 -5°C of actual Peak	10 seconds	10 seconds	
Ramp-Down Rate	5°C/second max.	5°C/second max	

Recommended Product Storage Environment for Discrete Semiconductor Devices

This storage environment assumes that the Diodes and transistors are packed properly inside the original packing supplied by CDIL.

- · Temperature 5 °C to 30 °C
- · Humidity between 40 to 70 %RH
- · Air should be clean.
- · Avoid harmful gas or dust.
- Avoid outdoor exposure or storage in areas subject to rain or water spraying .
- · Avoid storage in areas subject to corrosive gas or dust. Product shall not be stored in areas exposed to direct sunlight.
- · Avoid rapid change of temperature.
- · Avoid condensation.
- · Mechanical stress such as vibration and impact shall be avoided.
- · The product shall not be placed directly on the floor.
- The product shall be stored on a plane area. They should not be turned upside down. They should not be placed against the wall.

Shelf Life of CDIL Products

The shelf life of products is the period from product manufacture to shipment to customers. The product can be unconditionally shipped within this period. The period is defined as 2 years.

If products are stored longer than the shelf life of 2 years the products shall be subjected to quality check as per CDIL quality procedure.

The products are further warranted for another one year after the date of shipment subject to the above conditions in CDIL original packing.

Floor Life of CDIL Products and MSL Level

When the products are opened from the original packing, the floor life will start.

For this, the following JEDEC table may be referred:

JEDEC MSL Level				
Level	Time	Condition		
1	Unlimited	≤30 °C / 85% RH		
2	1 Year	≤30 °C / 60% RH		
2a	4 Weeks	≤30 °C / 60% RH		
3	168 Hours	≤30 °C / 60% RH		
4	72 Hours	≤30 °C / 60% RH		
5	48 Hours	≤30 °C / 60% RH		
5a	24 Hours	≤30 °C / 60% RH		
6	Time on Label(TOL)	≤30 °C / 60% RH		

Customer Notes

Component Disposal Instructions

- 1. CDIL Semiconductor Devices are RoHS compliant, customers are requested to please dispose as per prevailing Environmental Legislation of their Country.
- 2. In Europe, please dispose as per EU Directive 2002/96/EC on Waste Electrical and Electronic Equipment (WEEE).

Disclaimer

The product information and the selection guides facilitate selection of the CDIL's Semiconductor Device(s) best suited for application in your product(s) as per your requirement. It is recommended that you completely review our Data Sheet(s) so as to confirm that the Device(s) meet functionality parameters for your application. The information furnished in the Data Sheet and on the CDIL Web Site/CD are believed to be accurate and reliable. CDIL however, does not assume responsibility for inaccuracies or incomplete information. Furthermore, CDIL does not assume liability whatsoever, arising out of the application or use of any CDIL product; neither does it convey any license under its patent rights nor rights of others. These products are not designed for use in life saving/support appliances or systems. CDIL customers selling these products (either as individual Semiconductor Devices or incorporated in their end products), in any life saving/support appliances or systems or applications do so at their own risk and CDIL will not be responsible for any damages resulting from such sale(s). CDIL strives for continuous improvement and reserves the right to change the specifications of its products without prior notice.

CDIL is a registered trademark of

Continental Device India Pvt. Limited