
1. Package

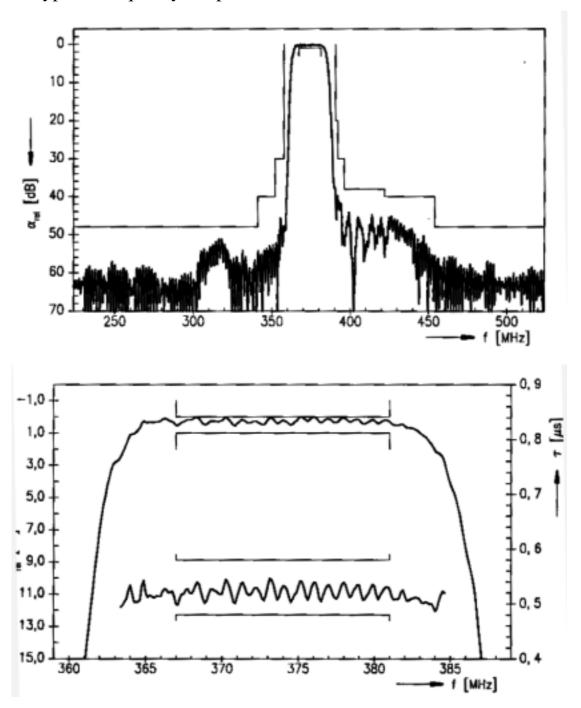
Ceramic package QCC8C

Dimensions in mm, weight 0.1g

Pin configuration

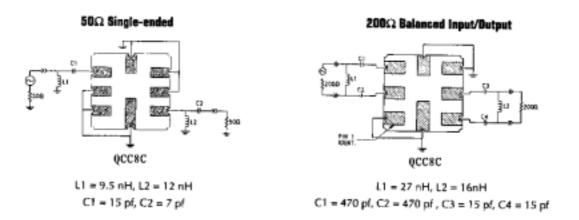
- 3 Input
- 2 Input or input ground
- 7 Output
- 6 Output or output ground
- 4,8 Case ground
- 1,5 To be grounded

- 2. Center Frequency (MHz): 374.00
- 3. Performance
 - 3.1 Absolute Maximum Ratings


Rating	Value	Units
CW RF Power	+0	dBm
DC Voltage between	±30	VDC
Case Temperature	-35 to +85	°C

Characteristic	Minimum	Typical	Maximum	Units
Nominal Frequency f N		374.00		MHz
Insertion Loss (including matching		8.5	10.5	dB
3 dB Bandwidth	17	20.5		MHz
Amplitude ripple (p-p) f N±7MHz		0.5	1	dB
Group delay ripple (p-p) f N±7MHz		40	100	ns
Triple transit suppression	30	40		dB
Relative attenuation				
309~352MHz352~357.5MHz390.5~392MHz392~396MHz396~439MHz439~454MHz	40 35 35 35 38 40	50 50 45 40 42 45	 	dB dB dB dB dB dB
Ultimate Rejection	50			dB
Operating Temperature Range	-20	25	85	°C

3.2 Electrical Characteristics


CAUTION: Electrostatic Sensitive Device. Observe precautions for handling NOTES:

- 1.Frequency aging is the change in f_c with time and is specified at +65 °C or less. Aging may exceed the specification for prolonged temperatures above +65 °C. Typically, aging is greatest the first year after manufacture, decreasing in subsequent years.
- 2.The frequency f_c id the frequency of minimum IL with the resonator in the specified test fixture in a 50 Ω test system with VSWR ≤ 1.2 : 1. Typically, $f_{oscillator}$ or $f_{transmitter}$ is less than the resonator f_c .
- 3. Typically, equipment utilizing this device requires emissions testing and government approval, which is the responsibility of the equipment manufacturer.
- 4.Unless noted otherwise , case temperature $T_c=+25+/-2$ °C.
- 5. The design, manufacturing process, and specifications of this device are subject to change without notice.
- 6.Derived mathematically from one or more of the following directly measured parameters: f_c , IL, 3 dB bandwidth, f_c versus T_c , and C_0 .
- 7.Turnover temperature, T_o, is the temperature of maximum (or turnover) frequency, f_o, The nominal center frequency at any case temperature , TC, may be calculated from :f = $f_o [1-FTC (T_o-T_c)^2]$. Typically, oscillator T₀ is 20° less than the specified resonator T_o.
- 8. This equivalent RLC model approximates resonator performance near the resonant frequency and is provided for reference only. The capacitance C_0 is the measured static (nonmotional) capacitance between either pin 1 and ground or pin 2 and ground. The measurement includes case parasitic capacitance

4. Typical Frequency Response

5. Impedance Matching

6. Reliability

- 6.1 Mechanical Shock: The components shall remain within the electrical specifications after 1000 shocks, acceleration 392m/s^2 , duration 6 milliseconds.
- 6.2 Vibration Fatigue: The components shall remain within the electrical specification after loaded vibration at 20 Hz , amplitude 1.5mm , for 2 hours.
- 6.3 High Temperature Storage: The components shall remain within the electrical specifications after being kept at the 85 ± 2 °C for 48 hours, then kept at room temperature for 2 hours.
- 6.4 Low Temperature Storage: The components shall remain within the electrical specifications after being kept at the -25 ± 2 °C for 48 hours, then kept room temperature for 2 hours.

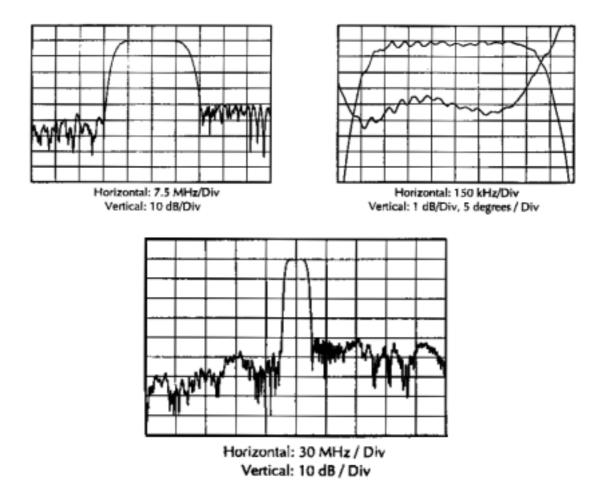
6.5 Temperature Cycle: The components shall remain within the electrical specifications after 5 cycles of high and low temperature testing(one cycle: 80 °C for 30 minutes \rightarrow 25 °C for 5 minutes \rightarrow -25 °C for 30 minutes) than kept at room temperature for 2 hours.

- 6.6 Solder-heat Resistance: The components shall remain within the electrical specifications after dipped in the solder at 260 °C for 10±1seconds,then kept at room temperature for 2 hours .(Terminal must be dipped leaving 1.5 mm from the case).
- 6.7 Solder ability: Solder ability of terminal shall be kept at more than 80% after dipped in the solder flux at 230 ± 5 °C for 5 ± 1 seconds.

7. Remarks

7.1 Static voltage

Static voltage between signal load & ground may cause deterioration & destruction of the component. Please avoid static voltage.


7.2 Ultrasonic cleaning

Ultrasonic vibration may cause deterioration & destruction of the component. Please avoid ultrasonic cleaning.

7.3 Soldering

Only leads of component may be soldered. Please avoid soldering another part of component.

Performance

