The **NDF420** is a low-loss, compact, and economical surface-acoustic-wave (**SAW**) filter in a surface-mount ceramic **QCC8C** case designed to provide front-end selectivity in **315.000** MHz receivers. Receiver designs using this filter include superhet with 10.7 MHz or 500 kHz IF, direct conversion and superregen.

1.Package Dimension (QCC8C)

Pin	Configuration				
1	Input				
2	Input Ground				
5	Output				
6	Output Ground				
3, 7	To be Grounded				
4,8	Case Ground				

Sign	Data (unit: mm)	Sign	Data (unit: mm)		
Α	2.08	Е	1.20		
В	0.60	F	1.35		
С	1.27	G	5.00		
D	2.54	Н	5.00		

2.Marking

NDF420

Laser Marking

3. Test Circuit

4. Typical Frequency Response

5.Performance

5-1.Maximum Rating

Rating	Value	Units
Input Power Level	10	dBm
DC Voltage	12V	VDC
Storage Temperature	-40 to +85	$^{\circ}$
Soldering Temperature	+235	$^{\circ}$

5-2 Electronic Characteristics

Characteristic		Minimum	Typical	Maximum	Units	
Center Frequency (center frequency between 3dB points)		f_{C}		315.000		MHz
Insertion Loss		IL		3.0	5.5	dB
3dB Pass band		BW ₃		±300		kHz
Rejection	at f _C -21.4MHz (Image)		40	50		dB
	at f _C -10.7MHz (LO)		15	30		
	Ultimate			80		
Temperature	Turnover Temperature	To	25		55	$^{\circ}$ C
	Turnover Frequency	f _O		fc		MHz
	Frequency Temperature Coefficient	FTC		0.032		ppm/°C²
Frequency Aging Absolute Value during the First Year		fA		10		ppm/yr

(i) CAUTION: Electrostatic Sensitive Device. Observe precautions for handling!

© NEDI 2003. All Rights Reserved

- 1. The frequency f_C is defined as the midpoint between the 3dB frequencies.
- 2. Unless noted otherwise, all measurements are made with the filter installed in the specified test fixture that is connected to a 50 Ω test system with VSWR≤1.2:1. The test fixture L and C are adjusted for minimum insertion loss at the filter center frequency, f_C. Note that insertion loss, bandwidth, and passband shape are dependent on the impedance matching component values and quality.
- 3. Unless noted otherwise, specifications apply over the entire specified operating temperature range.
- Frequency aging is the change in f_C with time and is specified at +65°C or less. Aging may exceed the specification for prolonged temperatures above +65°C. Typically, aging is greatest the first year after manufacture, decreasing in subsequent years.
- 5. Turnover temperature, T_0 , is the temperature of maximum (or turnover) frequency, f_0 . The nominal frequency at any case temperature, T_C , may be calculated from: $f = f_0 [1 FTC (T_0 T_C)^2]$.
- The specifications of this device are based on the test circuit shown above and subject to change or obsolescence without notice.
- 7. All equipment designs utilizing this product must be approved by the appropriate government agency prior to manufacture or sale.
- 8. Our liability is only assumed for the Surface Acoustic Wave (SAW) component(s) per se, not for applications, processes and circuits implemented within components or assemblies.
- 9. For questions on technology, prices and delivery please contact our sales offices or e-mail sales@ndsaw.com.