Approved by

Checked by:

Issued by:

SPECIFICATION

Product: <u>SAW Filter</u> Model: NDF550

1.Package

Ceramic package QCC8C

Pin configuration

1 Input Ground

2 Input

5 Output Ground

6 Output

3,4,7,8 Case - Ground

Dimensions in mm, appr. weight 0.1g

2. Marking

NDF550

3. Performance

3.1 Absolute Maximum Ratings

Rating	Value	Units	
Incident RF Power	+13	dBm	
Case Temperature	-40 to +85	${\mathbb C}$	
DC Voltage Between Any Two Pins (Observe ESD Precautions)	±30	VDC	

3.2 Electrical Characteristics

Reference temperature: $T_A = 25^{\circ}C$

Terminating source impedance: $Z_S = 50 \Omega$ and matching network Terminating load impedance: $ZL = 50 \Omega$ and matching network

Characte	eristic	Sym.	Min.	Typ.	Max.	Units
Center Fre	quency quency between 3dB points)	f_c		433.92		MHz
Insertion L	oss	I_{L}		2.5	5.5	dB
3dB Passb	and	BW ₃		±300	±400	kHz
Rejection	at f _c -21.4MHz(Image)		40	50		dB
	at f _c -10.7MHz(LO)		15	30		
	Ultimate		1	80	1	
Temperat ure	Operating Case Temperature	Тс	-35		+85	${\mathbb C}$
	Turnover Temperature	То	15	25	40	
	Turnover Frequency	fo		fc		MHz
	Frequency Temperature Coefficient	FTC		0.032		ppm/℃
Frequency	Aging Absolute Value during the First Year	fA		10		ppm/yr

CAUTION: Electrostatic Sensitive Device. Observe precautions for handling! *Notes:*

- 1. Unless noted otherwise, all measurements are made with the filter installed in the specified test fixture which is connected to a 50 Ω test system with VSWR \leq 1.2:1. The test fixture L and C are adjusted for minimum insertion loss at the filter center frequency, fc. Note that insertion loss and bandwidth are dependent on the impedance matching component values and quality.
- 2. The frequency fc is defined as the midpoint between the 3dB frequencies.
- 3. Unless noted otherwise, specifications apply over the entire specified operating temperature range.
- 4. The turnover temperature, TO, is the temperature of maximum (or turnover) frequency, fo. The nominal frequency at any case temperature, Tc, may be calculated from: f = fo [1 FTC (To Tc)2].
- 5. Frequency aging is the change in fc with time and is specified at +65°C or less. Aging may exceed the specification for prolonged temperatures above +65°C. Typically, aging is greatest the first year after manufacture, decreasing significantly in subsequent years.
- 6. The design, manufacturing process, and specifications of this device are subject to change without notice.
- 7. One or more of the following U.S. Patents apply: 4,54,488, 4,616,197, and others pending.
- 8. All equipment designs utilizing this product must be approved by the appropriate government agency prior to manufacture or sale.

4. Matching network to 50 Ω

(element values depend on PCB layout and equivalent circuit)

Cp1 =10pF, Ls2 =43nH*, Ls3 =43nH*, Cp4 =10pF Ls2 = Ls3 = 6 turns of 0.51mm insulated Copper, 2.5mm ID.

5. Typical Frequency Response

