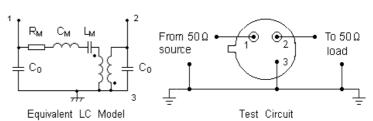

The NDQ434.32 is a true two-port, 180° surface-acoustic-wave (**SAW**) resonator in a low-profile **TO-39** case. It provides reliable, fundamental-mode, quartz frequency stabilization of fixed-frequency transmitters operating at **434.32 MHz**.

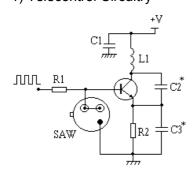
1.Package Dimension (TO-39)

Pin	Connection			
1	Terminal1			
2	Terminal2			
3	Case Ground			

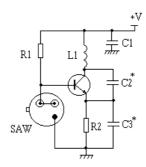

	Data (unit: mm)			
Α	9.30±0.20			
В	5.08±0.10			
С	3.40±0.20			
D	3±0.20 / 5±0.20			
E	0.45±0.20			

2.Marking

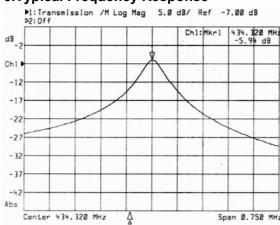
NDQ434.32

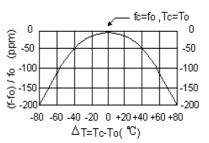

Color: Black or Blue

3. Equivalent LC Model and Test Circuit



4.Typical Application Circuit


1) Telecontrol Circuitry


2) Local Oscillator Application

5. Typical Frequency Response

6.Temperature Characteristics

The curve shown above accounts for resonator contribution only and does not include oscillator temperature characteristics.

NANJING ELECTRONIC DEVICE INSTITUTE

NDQ434.32

7.Performance

7-1.Maximum Rating

Rating	Value	Units
CW RF Power Dissipation	+10	dBm
DC Voltage Between Any Two Pins	±30V	VDC
Case Temperature	-40 to +85	$^{\circ}$

7-2. Electronic Characteristics

	Characteristic	Sym	Minimum	Typical	Maximum	Units
Center Frequency (+25°C)	Absolute Frequency	f _C	434.22		434.42	MHz
	Tolerance from 434.32 MHz	Δf_{C}		±100		kHz
Insertion Loss		IL		6.5	8	dB
Quality Factor	Unloaded Q	Q _U		14,060		
	50 Ω Loaded Q	Q_L		7,400		
Temperature Stability	Turnover Temperature	To	25	40	55	$^{\circ}$
	Turnover Frequency	f _O		fc		kHz
	Frequency Temperature Coefficient	FTC		0.037		ppm/°C²
Frequency Aging Absolute Value during the First Year		f _A		≤10		ppm/yr
DC Insulation Resistance Between Any Two Pins			1.0			ΜΩ
RF Equivalent RLC Model	Motional Resistance	R _M		111	151	Ω
	Motional Inductance	L _M		572.459		μН
	Motional Capacitance	См		0.2348		fF
	Shunt Static Capacitance	Co		1.95		pF

© CAUTION: Electrostatic Sensitive Device. Observe precautions for handling!

NOTES:

- 1.Frequency aging is the change in $f_\mathbb{C}$ with time and is specified at +65 $^\circ\mathbb{C}$ or less. Aging may exceed the specification for prolonged temperatures above +65 $^\circ\mathbb{C}$. Typically, aging is greatest the first year after manufacture, decreasing in subsequent years.
- 2.The center frequency, f_C ,is the frequency of minimum IL measured with the resonator in the specified test fixture in a 50 Ω test system with VSWR \leq 1.2 : 1. Typically, $f_{oscillator}$ or $f_{oscillator}$ is less than the resonator f_C
- f_{transmitter} is less than the resonator f_C.

 3.Typically, equipment utilizing this device requires emissions testing and government approval, which is the responsibility of the equipment manufacturer.
- 5.The design, manufacturing process, and specifications of this device are subject to change without notice.

- 6.Derived mathematically from one or more of the following directly measured parameters: f_C, IL, 3 dB bandwidth, f_C versus T_C , and C_O .
- 7.Turnover temperature, T_O , is the temperature of maximum (or turnover) frequency, f_O , The nominal center frequency at any case temperature , T_C , may be calculated from :f = f_O [1-FTC (T_O-T_C) 2] .Typically, oscillator T_O is 20 $^\circ$ C less than the specified resonator T_O .
- 8.This equivalent RLC model approximates resonator performance near the resonant frequency and is provided for reference only . The capacitance C_0 is the measured static (nonmotional) capacitance between either pin 1 and ground or pin 2 and ground .The measurement includes case parasitic capacitance.