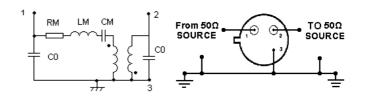
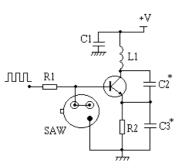

NEDI

Two-port SAW Resonator

NDQ434

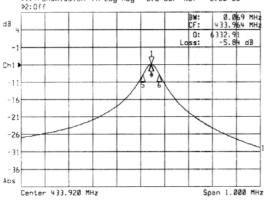

The NDQ434 is a true two-port, 180° surface-acoustic-wave (**SAW**) resonator in a low-profile **TO-39** case. It provides reliable, fundamental-model, quartz frequency stabilization of fixed-frequency transmitters operating at **433.92 MHz**.

1.Package Dimension (TO-39)

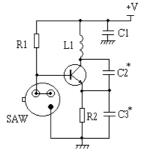


Pin	Connection					
1	Terminal1					
2	Terminal2					
3	Case Ground					
	Data (unit: mm)					
	9.1±0.10					
А	9.1±0.10					
A B	9.1±0.10 5.08±0.10					
В	5.08±0.10					

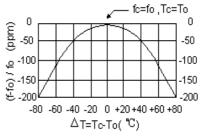
3.Equivalent LC Model and Test Circuit



2) Local Oscillator Application


5.Typical Frequency Response

▶1:Transmission /M Log Mag 5.0 dB/ Ref -6.00 dB



 NANJING ELECTRONIC DEVICE INSTITUTE

 http://www.ndsaw.com
 E-mail: sales@ndsaw.com

6.Temperature Characteristics

The curve shown above accounts for resonator contribution only and does not include oscillator temperature characteristics.

2.Marking

NDQ434

Color: Black or Blue

4.Typical Application Circuit 1) Telecontrol Circuitry

7.Performance

7-1.Maximum Rating

Rating	Value	Units
CW RF Power Dissipation	+0	dBm
DC Voltage Between Any Two Pins	± 30 V	VDC
Case Temperature	-40 to +85	°C

7-2. Electronic Characteristics

	Characteristic	Sym	Minimum	Typical	Maximum	Units
Center Frequency (+25℃)	Absolute Frequency	f _C	433.82		434.02	MHz
	Tolerance from 433.92 MHz	Δf_{C}		±100		kHz
Insertion Loss		IL		6	8	dB
Quality Factor	Unloaded Q	Q _U		13,000		
	50 Ω Loaded Q	QL		6,500		
Temperature Stability	Turnover Temperature	Τo	25	40	55	°C
	Turnover Frequency	f _O		fc		kHz
	Frequency Temperature Coefficient	FTC		0.037		ppm/℃ ²
Frequency Aging Absolute Value during the First Year		f _A		≤10		ppm/yr
DC Insulation Resistance Between Any Two Pins			1.0			MΩ
RF Equivalent RLC Model	Motional Resistance	R _M		100	151	Ω
	Motional Inductance	L _M		477.061		μH
	Motional Capacitance	См		0.2823		fF
	Pin 1 to Pin 2 Static Capacitance	Co	1.4	1.7	2.0	pF

© CAUTION: Electrostatic Sensitive Device. Observe precautions for handling !

NOTES:

- 1.Frequency aging is the change in $f_{\rm C}$ with time and is specified at +65 $^\circ\!{\rm C}$ or less. Aging may exceed the specification for prolonged temperatures above +65 $^\circ\!{\rm C}$. Typically, aging is greatest the first year after manufacture, decreasing in subsequent years.
- 2.The center frequency, f_C ,is the frequency of minimum IL measured with the resonator in the specified test fixture in a 50 Ω test system with VSWR $\leqslant 1.2:1$. Typically, $f_{\text{oscillator}}$ or $f_{\text{transmitter}}$ is less than the resonator f_C .
- 3.Typically, equipment utilizing this device requires emissions testing and government approval, which is the responsibility of the equipment manufacturer.
- 4.Unless noted otherwise , case temperature $T_C \text{=+}25^\circ\!\mathbb{C}\pm 2^\circ\!\mathbb{C}$.
- 5. The design, manufacturing process, and specifications of this device are subject to change without notice.

- 6.Derived mathematically from one or more of the following directly measured parameters: $f_C,\ IL,\ 3\ dB$ bandwidth, f_C versus T_C , and $C_O.$
- 7.Turnover temperature, T_o, is the temperature of maximum (or turnover) frequency, f_o The nominal center frequency at any case temperature , T_c, may be calculated from :f = f_o [1-FTC (T_o-T_c)²].Typically, oscillator T_o is 20 °C less than the specified resonator T_o.
- 8. This equivalent RLC model approximates resonator performance near the resonant frequency and is provided for reference only. The capacitance C_0 is the measured static (nonmotional) capacitance between either pin 1 and ground or pin 2 and ground. The measurement includes case parasitic capacitance.