

Approved by

Checked by:

Issued by:

Product: <u>1-port SAW Resonator</u> Model: <u>NDR303.325S2</u>

NANJING ELECTRONIC DEVICES INSTITUTE, CHINA

524 East Zhongshan Rd., Nanjing, Jiangsu, P. R. China Email:sales@ndsaw.com http://www.ndsaw.com

1.Package Dimension (SM-2)

М

к

Terminal Detail						
<u></u>	┝━─┞─━┤					
н		G				
ŧ		•				

Dimensione	Millimeters		
Dimensions	Min.	Max.	
A		6.30	
В		4.44	
С		2.08	
D	0.94	1.10	
E	0.83	.83 1.20	
F	1.16	1.53	
G	0.94	1.10	
н	0.43	0.59	
К	1.96	2.00	
М		4.8	
Р		2.9	

2.Marking

NDR303.325S2

- 2-1 Color: White
- 2-2 Center Frequency (MHz): 303.325

3.Performance

3-1. Absolute Maximum Ratings

Rating	Value	Units	
CW RF Dissipation	0	dBm	
DC Voltage Between Terminals (Observe ESD Precautions)	±30	VDC	
Case Temperature	-40 to +85	°C	
Soldering Temperature	+250	°C	

NANJING ELECTRONIC DEVICES INSTITUTE, CHINA 524 East Zhongshan Rd., Nanjing, Jiangsu, P. R. China

Email:sales@ndsaw.com http://www.ndsaw.com

3-2 Electronic Characteristics

Characteristic		Sym	Minimum	Typical	Maximum	Units
Center Frequency at +25℃	Absolute Frequency	fc	303.250		303.400	MHz
	Tolerance from 303.325MHz	∆fc			±75	kHz
Insertion Loss		IL		1.3	2.0	dB
Quality Factor	Unloaded Q	Q _U		14,200		
	50 Ω Loaded Q	QL		1,900		
Temperature Stability	Turnover Temperature	T ₀	24	39	54	°C
	Turnover Frequency	f ₀		fc		
	Frequency Temperature Coefficient	FTC		0.032		ppm/℃²
Frequency Aging Absolute Value during the First Year		fA		10		ppm/yr
DC Insulation Resistance between Any Two Pins			1.0			MΩ
RF Equivalent RLC Model	Motional Resistance	R _M		19	26	Ω
	Motional Inductance	L _M		119.245		μH
	Motional Capacitance	C _M		2.25143		fF
	Shunt Static Capacitance	C _P	2.0	2.2	2.4	pF

© CAUTION: Electrostatic Sensitive Device. Observe precautions for handling!

Notes:

- 1. Frequency aging is the change in f_C with time and is specified at +65°C or less. Aging may exceed the specification for prolonged temperatures above +65°C.Typically, aging is greatest the first year after manufacture, decreasing in subsequent years.
- 2. The center frequency, f_C , is measured at the minimum insertion loss point, IL_{MIN}, with the resonator in the 50 Ω test system (VSWR \leq 1.2:1). The shunt inductance, L_{TEST}, is tuned for parallel resonance with C_O at f_C . Typically, $f_{oscillator}$ or $f_{transmitter}$ is approximately equal to the resonator f_C .
- 3. Typically, equipment utilizing this device requires emissions testing and government approval, which is the responsibility of the equipment manufacturer.
- 4. Unless noted otherwise, case temperature $TC = +25^{\circ}C\pm 2^{\circ}C$.
- 5. The design, manufacturing process, and specifications of this device are subject to change without notice.
- 6. Derived mathematically from one or more of the following directly measured parameters: f_C , IL, 3 dB bandwidth, f_C versus T_C , and C_C .
- 7. Turnover temperature, T_O , is the temperature of maximum (or turnover) frequency, f_O . The nominal frequency at any case temperature, TC, may be calculated from: $f = f_0 [1 FTC (T_O T_C)2]$. Typically *oscillator* T_O is approximately equal to the specified resonator T_O .
- 8. This equivalent RLC model approximates resonator performance near the resonant frequency and is provided for reference only. The capacitance C_0 is the static (nonmotional) capacitance between the two terminals measured at low frequency (10 MHz) with a capacitance meter. The measurement includes parasitic capacitance with "NC" pads unconnected. Case parasitic capacitance is approximately 0.05 pF. Transducer parallel capacitance can by calculated as: $C_P = C_0 0.05$ pF.

NANJING ELECTRONIC DEVICES INSTITUTE, CHINA

524 East Zhongshan Rd., Nanjing, Jiangsu, P. R. China Email:sales@ndsaw.com http://www.ndsaw.com

4. Electrical Connections

5.Typical Test Circuit

NANJING ELECTRONIC DEVICES INSTITUTE, CHINA

524 East Zhongshan Rd., Nanjing, Jiangsu, P. R. China Email:sales@ndsaw.com http://www.ndsaw.com