

Approved by

Checked by:

Issued by:

SPECIFICATION

MODEL: NDR 303KS2

NANJING ELECTRONIC DEVICES INSTITUTE, CHINA

1.Package Dimension (SM-2)								
• •	Top Viev Si	de View Bottom \neg $ C $ \neg $ D $ M $ D $ $ D K$ $ D $ $ D D $ $ D $	Viev Terminal	Detail •				
		Millir						
			Max.					
	Α		6.30					
	В		4.44					
	С		2.08					
	D	0.94	1.10					
	Е	0.83	1.20					
	F	1.16	1.53					
	G	0.94	1.10					
	Н	0.43	0.59					
	K	1.96	2.00					
	М		4.8					
	Р		2.9					

2. Marking

NDR303KS2

2-1 Color: White

2-2 Center Frequency (MHz): 303.825

3.Performance

3-1. Absolute Maximum Ratings

Rating	Value	Units			
CW RF Dissipation	+5	dBm			
DC Voltage Between Terminals (Observe ESD Precautions)	±30	VDC			
Case Temperature	-40 to +85	°C			
Soldering Temperature	+250	°C			

NANJING ELECTRONIC DEVICES INSTITUTE, CHINA

3-2Electronic Characteristics

Characteristic		Sym	Min.	Typical	Max.	Units
Center	Absolute Frequency	fc		303.825		MHz
Frequency at +25°C	Tolerance from 303.825MHz	Δfc		±75		kHz
Insertion Loss		IL		1.5	2.0	dB
Quality Factor	Unloaded Q	Q _U		13,800		
Quality 1 actor	50 Ω Loaded Q	QL		2,000		
	Turnover Temperature	T ₀	24	39	54	°C
Temperature	Turnover Frequency	f_0		fc		
Stability	Frequency Temperature Coefficient	FTC		0.032		ppm/°C ²
Frequency Aging Absolute Value during the First Year		fA		10		ppm/yr
DC Insulation Resistance between Any Two Pins			1.0			MΩ
	Motional Resistance	R _M		19	26	Ω
RF Equivalent	Motional Inductance	L _M		127.021		μH
RLC Model	Motional Capacitance	C _M		2.16032		fF
	Shunt Static Capacitance	C _P	2.0	2.2	2.4	pF

© CAUTION: Electrostatic Sensitive Device. Observe precautions for handling Notes:

- 1. Frequency aging is the change in f_C with time and is specified at +65°C or less.Aging may exceed the specification for prolonged temperatures above +65°C.Typically, aging is greatest the first year after manufacture, decreasing in subsequent years.
- 2. The center frequency, f_C , is measured at the minimum insertion loss point, IL_{MIN}, with the resonator in the 50 Ω test system (VSWR \leq 1.2:1). The shunt inductance, L_{TEST}, is tuned for parallel resonance with C_O at f_C. Typically, f_{oscillator} or f_{transmitter} is approximately equal to the resonator f_C.
- 3. Typically, equipment utilizing this device requires emissions testing and government approval, which is the responsibility of the equipment manufacturer.
- 4. Unless noted otherwise, case temperature $TC = +25^{\circ}C\pm 2^{\circ}C$.
- 5. The design, manufacturing process, and specifications of this device are subject to change without notice.
- 6. Derived mathematically from one or more of the following directly measured parameters: f_C , IL, 3 dB bandwidth, f_C versus T_C , and C_O .
- 7. Turnover temperature, T_O , is the temperature of maximum (or turnover) frequency, f_O . The nominal frequency at any case temperature, TC, may be calculated from: $f = f_0 [1 FTC (T_O T_C)2]$. Typically oscillator T_O is approximately equal to the specified *resonator* T_O .
- 8. This equivalent RLC model approximates resonator performance near the resonant frequency and is provided for reference only. The capacitance C_O is the static (nonmotional) capacitance between the two terminals measured at low frequency (10 MHz) with a capacitance meter. The measurement includes parasitic capacitance with "NC" pads unconnected. Case parasitic capacitance is approximately 0.05 pF. Transducer parallel capacitance can by calculated as: $C_P \approx C_O - 0.05$ pF.

NANJING ELECTRONIC DEVICES INSTITUTE, CHINA

4. Electrical Connections

5. Typical Test Circuit

NANJING ELECTRONIC DEVICES INSTITUTE, CHINA