Approved by:

Checked by:

Issued by:

PRODUCT: 1-port SAW Resonator MODEL: NDR304S2

NEDI

2. Marking

NDR304S2

- 2-1.Color: White
- 2-2.Center Frequency (MHz): 304.30

3. Performance

3-1. Absolute Maximum Ratings

Rating	Value	Units
CW RF Dissipation	0	dBm
DC Voltage Between Terminal (Observe ESD Precautions)	±30	VDC
Case Temperature	-40 to +85	°C

Characteristic		Sym	Minimum	Typical	Maximum	Units			
Center Frequency at +25℃	Absolute Frequency	fc	304.225		304.375	MHz			
	Tolerance from 304.30MHz	Δfc			±75	kHz			
Insertion Loss		IL		1.2	18	dB			
Quality Factor	Unloaded Q	$Q_{\rm U}$	10,600	16,328					
	50 Ω Loaded Q	QL	1,990	2,129					
Temperature Stability	Turnover Temperature	T ₀	24	39	54	°C			
	Turnover Frequency	f_0		fc					
	Frequency Temperature Coefficient	FTC		0.032		ppm/°C ²			
Frequency Aging Absolute Value during the First Year		fA		10		ppm/yr			
DC Insulation Resistance between Any Two Pins			1.0			MΩ			
RF Equivalent RLC Model	Motional Resistance	R _M		15	23	Ω			
	Motional Inductance	L_{M}		128.16596		μH			
	Motional Capacitance	C _M		2.136506		fF			
	Shunt Static Capacitance	Co		2.5		pF			

3-2Electronic Characteristics

^{(CAUTION: Electrostatic Sensitive Device. Observe precautions for handling}

NOTES:

- 1. Lifetime (10 year) frequency aging.
- 2. The center frequency, f_c is measured at the minimum insertion loss point, IL_{MIN} with the resonator in the 50 Ω test system (VSWR ≤ 1.2 : 1).
- 3. Typically, equipment utilizing this device requires emissions testing and government approval, which is the responsibility of the equipment manufacturer.
- 4. Unless noted otherwise , case temperature $T_c{=}{+}25\,^\circ\!\mathrm{C}{\pm}2\,^\circ\!\mathrm{C}{.}$
- 5. The design, manufacturing process, and specifications of this device are subject to change without notice.
- 6. Derived mathematically from one or more of the following directly measured parameters: f_c , IL, 3 dB bandwidth, f_c versus T_c , and C_0 .
- 7. Turnover temperature, T_0 , is the temperature of maximum (or turnover) frequency, f_0 , The nominal center frequency at any case temperature, TC, may be calculated from: $f = f_0 [1-FTC (T_0-T_C)^2]$.
- 8. This equivalent RLC model approximates resonator performance near the resonant frequency and is provided for reference only. The capacitance C_0 is the static (nonmotional) capacitance between the two terminals measured at low frequency (10MHz) with a capacitance meter. The measurement includes parasitic capacitance with "NC" pads unconnected. Case parasitic capacitance is approximately 0.05pF,Transducer parallel capacitance can by calculated as: $C_P=C_O-0.05pF$.

4. Electrical Connections

5. Test Circuit

6. Typical Frequency Response

