SAW Resonator

The NDR315S2 is a true one-port, surface-acoustic-wave (**SAW**) resonator in a low-profile **SM-2** case. It provides reliable, fundamental-model, quartz frequency stabilization of fixed-frequency transmitters operating at **315 MHz**.

1.Package Dimension (SM-2)

NDR315S2

Pin	Connection			
1	Terminal1			
2	Terminal2			
3/4	Case Ground			

Sign	Data (unit: mm)	Sign	Data(unit:mm)		
Α	6.30	F	2.00		
В	4.44	G	1.10		
С	2.90	К	1.20		
D	2.08	М	1.53		
E	4.80	Р	1.10		

3.Equivalent LC Model and Test Circuit

2) Local Oscillator Application

5.Typical Frequency Response

 NANJING ELECTRONIC DEVICE INSTITUTE

 http://www.ndsaw.com
 E-mail: sales@ndsaw.com

6.Temperature Characteristics

The curve shown above accounts for resonator contribution only and does not include oscillator temperature characteristics.

Tel: +86-25-4490216

Color: Black or Blue

2.Marking

4.Typical Application Circuit

1) Telecontrol Circuitry

7.Performance

7-1.Maximum Rating

Rating	Value	Units
CW RF Power Dissipation	+0	dBm
DC Voltage Between Any Two Pins	± 30 V	VDC
Case Temperature	-40 to +85	°C

7-2. Electronic Characteristics

	Characteristic	Sym	Minimum	Typical	Maximum	Units
Center Frequency (+25℃)	Absolute Frequency	f _C	314.925		315.075	MHz
	Tolerance from 315 MHz	Δf_{C}		±75		kHz
Insertion Loss		IL		1.5	2.2	dB
Quality Factor	Unloaded Q	Q _U		12,500		
	50 Ω Loaded Q	QL		2,000		
Temperature Stability	Turnover Temperature	Τo	25	40	55	°C
	Turnover Frequency	f _O		fc		kHz
	Frequency Temperature Coefficient	FTC		0.037		ppm/℃ ²
Frequency Aging Absolute Value during the First Year		f _A		≪10		ppm/yr
DC Insulation Resistance Between Any Two Pins			1.0			MΩ
RF Equivalent RLC Model	Motional Resistance	R _M		19	29	Ω
	Motional Inductance	L _M		120.311		μH
	Motional Capacitance	См		2.1240		fF
	Pin 1 to Pin 2 Static Capacitance	Co		2.5		pF

© CAUTION: Electrostatic Sensitive Device. Observe precautions for handling !

NOTES:

- 1. Frequency aging is the change in f_C with time and is specified at +65 $^\circ\!C$ or less. Aging may exceed the specification for prolonged temperatures above +65 $^\circ\!C$.Typically, aging is greatest the first year manufacture, decreasing in subsequent years.
- 2. The center frequency, f_c is measured at the minimum insertion loss point, IL_{MIN} with the resonator in the 50 Ω test system (VSWR $\leq 1.2:1$). The shunt inductance, L_{TEST} , is tuned for parallel resonance with C₀ at f_c . Typically, $f_{oscillator}$ or $f_{transmitter}$ is less than the resonator f_c . 3. Typically, equipment utilizing this device requires emissions
- Typically, equipment utilizing this device requires emissions testing and government approval, which is the responsibility of the equipment manufacturer.
- 4. Unless noted otherwise , case temperature $T_c {=} {+}25^\circ\!\mathbb{C} \pm 2^\circ\!\mathbb{C}$.
- 5. The design, manufacturing process, and specifications of this device are subject to change without notice.

- 6. Derived mathematically from one or more of the following directly measured parameters: $f_C,\ IL,\ 3\ dB$ bandwidth, f_C versus T_C , and $C_0.$
- 7. Turnover temperature, T_o, is the temperature of maximum (or turnover) frequency, f_o. The nominal center frequency at any case temperature, TC, may be calculated from: $f = f_o [1-FTC (T_o-T_c)^2]$. Typically, oscillator T_o is 20 °C less than the specified resonator T_o.
- specified resonator T_o. 8. This equivalent RLC model approximates resonator performance near the resonant frequency and is provided for reference only. The capacitance C₀ is the static (nonmotional) capacitance between the two terminals measured at low frequency (10MHz) with a capacitance meter. The measurement includes parasitic capacitance with "NC" pads unconnected. Case parasitic capacitance is approximately 0.05pF, Transducer parallel capacitance can by calculated as: $C_P = C_0 - 0.05pF$.