

Approved by:

Checked by:

Issued by:

Product: <u>1-port SAW Resonator</u> Model: <u>NDR423.22S2</u>

NANJING ELECTRONIC DEVICES INSTITUTE, CHINA

524 East Zhongshan Rd., Nanjing210016, P. R. China Email:sales@ndsaw.com http://www.ndsaw.com

1.Package Dimension (SM-2)

М

Terminal Detail

G

Pin Configuration

- Input/Output 1
- 2 Output/Input
- 3,4 Ground

	Millimeters				
		Max.			
А		6.30			
В		4.44			
С		2.08			
D	0.94	1.10			
Е	0.83	1.20			
F	1.16	1.53			
G	0.94	1.10			
Н	0.43	0.59			
K	1.96	2.00			
М		4.8			
Р		2.9			

2. Marking

NDR423.22S2

- 2-1.Colour: White
- 2-2.Center Frequency (MHz): 423.22

3. Performance

3-1.Maximum Rating

DC Voltage V _{DC}	±30V
Case Temperature	-40°C to +85°C
RF Power Dissipation	0 dBm
Soldering Temperature	+250°C

NANJING ELECTRONIC DEVICES INSTITUTE, CHINA

524 East Zhongshan Rd., Nanjing210016, P. R. China Email:sales@ndsaw.com http://www.ndsaw.com

3-2Electronic Characteristics

(Characteristic	Sym	Minimum	Typical	Maximum	Units
Center Frequency (+25℃)	Absolute Frequency	fc	423.145		423.295	MHz
	Tolerance from 423.22 MHz	Δfc			±75	kHz
Insertion Loss		IL		1.1	1.9	dB
Quality Factor	Unloaded Q	Q _U		15,300		
	50 Ω Loaded Q	QL		1,800		
Temperature Stability	Turnover Temperature	T ₀	10	25	40	°C
	Turnover Frequency	f_0		fc		kHz
	Frequency Temperature Coefficient	FTC		0.032		ppm/°C ²
Frequency Aging Absolute Value during the First Year		FA		10		ppm/yr
DC Insulation Resistance between Any Two Pins			1.0			MΩ
RF Equivalent RLC Model	Motional Resistance	R _M		13	29	Ω
	Motional Inductance	L _M		72.1451		μΗ
	Motional Capacitance	C _M		1.8532		fF
	Pin 1 to Pin 2 Static	Co		1.9		pF

CAUTION: Electrostatic Sensitive Device. Observe precautions for handling

NOTE:

- 1. Frequency aging is the change in f_C with time and is specified at +65°C or less. Aging may exceed the specification for prolonged temperatures above +65°C.Typically, aging is greatest the first year after manufacture, decreasing in subsequent years.
- 2. The center frequency, f_C , is measured at the minimum insertion loss point, IL_{MIN}, with the resonator in the 50 Ω test system (VSWR \leq 1.2:1). The shunt inductance, L_{TEST}, is tuned for parallel resonance with C_O at f_C. Typically, f_{oscillator} or f_{transmitter} is approximately equal to the resonator f_C.
- 3. Typically, equipment utilizing this device requires emissions testing and government approval, which is the responsibility of the equipment manufacturer.
- 4. Unless noted otherwise, case temperature TC = +25°C±2°C.
- 5. The design, manufacturing process, and specifications of this device are subject to change without notice.
- 6. Derived mathematically from one or more of the following directly measured parameters: f_C, IL, 3 dB bandwidth, f_C versus T_C, and C_O.
- 7. Turnover temperature, T_O, is the temperature of maximum (or turnover) frequency, f_O. The nominal frequency at any case temperature, TC, may be calculated from: f = f₀ [1 FTC (T_O -T_C)2]. Typically *oscillator* T_O is approximately equal to the specified *resonator* T_O.
- 8. This equivalent RLC model approximates resonator performance near the resonant frequency and is provided for reference only. The capacitance C_O is the static (nonmotional) capacitance between the two terminals measured at low frequency (10 MHz) with a capacitance meter. The measurement includes parasitic capacitance with "NC" pads unconnected. Case parasitic capacitance is approximately 0.05 pF. Transducer parallel capacitance can by calculated as: $C_P \approx C_O 0.05$ pF.

4. Reliability

- 4.1 Mechanical Shock: The components shall remain within the electrical specifications after 1000 shocks, acceleration 392m/s², duration 6 milliseconds.
- 4.2 Vibration Fatigue: The components shall remain within the electrical specifications after loaded vibration at 20 Hz , amplitude 1.5mm , for 2 hours.
- 4.3 Terminal Strength: The components shall remain within the electrical specifications after pulled 2 Kgs weight for 10 seconds towards an axis of each terminal.
- 4.4 High Temperature Storage: The components shall remain within the electrical specifications after being kept at the $85 \degree C \pm 2 \degree C$ for 48 hours, then kept at room temperature for 2 hours.
- 4.5 Low Temperature Storage: The components shall remain within the electrical specifications after being kept at the $-25^{\circ}C \pm 2^{\circ}C$ for 48 hours ,then kept room temperature for 2 hours.
- 4.6 Temperature Cycle: The components shall remain within the electrical specifications after 5 cycles of high and low temperature testing(one cycle: 80° C for 30 minutes $\rightarrow 25^{\circ}$ C for 5 minutes $\rightarrow -25^{\circ}$ C for 30 minutes) than kept at room temperature for 2 hours.
- 4.7 Solder-heat Resistance : The components shall remain within the electrical specifications after dipped in the solder at 260°C for 10±1seconds,then kept at room temperature for 2 hours .(Terminal must be dipped leaving 1.5 mm from the case).
- 4.8 Solder ability: Solder ability of terminal shall be kept at more than 80% after dipped in the solder flux at 230° C $\pm 5^{\circ}$ C for 5±1 seconds.

5. Remarks

5.1 Static voltage

Static voltage between signal load & ground may cause deterioration & destruction of the component. Please avoid static voltage .

5.2 Ultrasonic cleaning

Ultrasonic vibration may cause deterioration & destruction of the component. Please avoid ultrasonic cleaning.

5.3 Soldering

Only leads of component may be soldered. Please avoid soldering another part of component.