
1.Package Dimension

(SM-2)

● | • F

G

ŧ

	Millimeters				
		Max			
А		6.30			
В		4.44			
С		2.08			
D	0.94	1.10			
Е	0.83	1.20			
F	1.16	1.53			
G	0.94	1.10			
Н	0.43	0.59			
K	1.96	2.00			
М		4.8			
Р		2.9			

2.Marking

NDR433.42S2

2-1.Colour: Black

2-2.Center Frequency(MHz):433.42

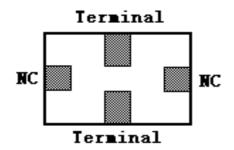
NDR433.42S2

NEDI 3.Performance

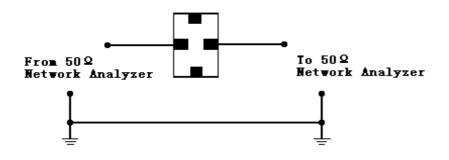
3-1.Maximum Rating

DC Voltage V _{DC}	30V
AC Voltage V _{PP}	10V(50Hz/60Hz)
Operation Temperature	-40°C to +85°C
Storage Temperature	-40°C to +85°C
RF Power Dissipation	0 dBm

3-2Electronic Characteristics


C	haracteristic	Sym	Minimum	Typical	Maximum	Units
Center Frequency (+25°C)	Absolute Frequency	fc	433.345		433.495	MHz
	Tolerance from 433.42 MHz	Δfc		±75		kHz
Insertion Loss				1.3	2.0	dB
Quality Factor	Unloaded Q	Q_{U}		12,600		
	50 Ω Loaded Q	Q_L		2,000		
Temperature Stability	Turnover Temperature	T ₀	24	39	54	°C
	Turnover Frequency	f_0		fc+2.7		kHz
	Frequency Temperature	FTC		0.037		ppm/°C
Frequency Aging	Absolute Value during the First Year	fA		≤10		ppm/yr
DC Insulation Resistance between Any Two Pins			1.0			MΩ
RF Equivalent RLC Model	Motional Resistance	R _M		12	26	Ω
	Motional Inductance	L _M		79.1546		μH
	Motional Capacitance	См		1.6854		fF
	Pin 1 to Pin 2 Static	Co		2.3		pF

CAUTION: Electrostatic Sensitive Device. Observe precautions for handling NOTES:


- 1. Frequency aging is the change in f_c with time and is specified at +65°C or less. Aging may exceed the specification for prolonged temperatures above +65°C. Typically, aging is greatest the first year after manufacture, decreasing in subsequent years.
- 2. The frequency f_c is the frequency of minimum IL with the resonator in the specified test fixture in a 50 Ω test system with VSWR ≤ 1.2 : 1. Typically, $f_{\text{oscillator}}$ or $f_{\text{transmitter}}$ is less than the resonator f_c .
- 3. Typically, equipment utilizing this device requires emissions testing and government approval, which is the responsibility of the equipment manufacturer.
- 4. Unless noted otherwise , case temperature $T_c{=}{+}25\,^\circ\!\mathrm{C}{\pm}2\,^\circ\!\mathrm{C}{.}$
- 5. The design, manufacturing process, and specifications of this device are subject to change without notice.
- 6.Derived mathematically from one or more of the following directly measured parameters: f_c , IL, 3 dB bandwidth, f_c versus T_c , and C_0 .
- 7. Turnover temperature, T_0 , is the temperature of maximum (or turnover) frequency, f_0 , The nominal center frequency at any case temperature, TC, may be calculated from : $f = f_0 [1-FTC (T_0-T_c)^2]$. Typically, oscillator T_0 is 20° less than the specified resonator T_0 . 8. This equivalent RLC model approximates resonator performance near the resonant frequency and is provided for reference
- 8. This equivalent RLC model approximates resonator performance near the resonant frequency and is provided for reference only . The capacitance C_0 is the measured static (nonmotional) capacitance between either pin 1 and ground or pin 2 and ground . The measurement includes case parasitic capacitance

4. Electrical Connections

5. Typical Test Circuit

