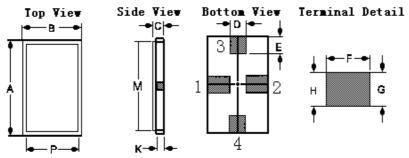
Approved by:

Checked by:

Issued by:

SPECIFICATION

PRODUCT: SAW 1-port Resonator


MODEL: NDR433S2

NEDI NDR433S2

1.Package Dimension

(SM-2)

Pin Configuration

- 1 Input/Output
- 2 Output/Input
- 3,4 Ground

,	•			
	Millimeters			
		Max.		
A		6.30		
В		4.44		
С		2.08		
D	0.94	1.10		
Е	0.83	1.20		
F	1.16	1.53		
G	0.94	1.10		
Н	0.43	0.59		
K	1.96	2.00		
M		4.8		
Р		2.9		

2. Marking

NDR433S2

2-1.Colour: White

2-2. Center Frequency (MHz): 433.92

3. Performance

3-1.Maximum Rating

DC Voltage V _{DC}	±30V
Case Temperature	-40°C to +85°C
RF Power Dissipation	0 dBm
Soldering Temperature	+250°C

NANJING ELECTRONIC DEVICES INSTITUTE, CHINA

3-2Electronic Characteristics

(Characteristic	Sym	Minimum	Typical	Maximum	Units
Center Frequency (+25°C)	Absolute Frequency	fc	433.845		433.995	MHz
	Tolerance from 433.92 MHz	Δfc			±75	kHz
Insertion Loss		IL		1.1	1.8	dB
Quality Factor	Unloaded Q	Q_U		12,800		
	50 Ω Loaded Q	Q_{L}		2,000		
Temperature Stability	Turnover Temperature	T_0	24	39	54	${\mathbb C}$
	Turnover Frequency	f_0		fc		kHz
	Frequency Temperature Coefficient	FTC		0.037		ppm/°C²
Frequency Aging Absolute Value during the First Year		FA		≤10		ppm/yr
DC Insulation	Resistance between Any Two Pins		1.0			ΜΩ
RF Equivalent RLC Model	Motional Resistance	R_{M}		13	26	Ω
	Motional Inductance	L_{M}		69.3481		μН
	Motional Capacitance	C_{M}		1.94228		fF
	Pin 1 to Pin 2 Static	Co		2.4		pF

© CAUTION: Electrostatic Sensitive Device. Observe precautions for handling

- Frequency aging is the change in f_C with time and is specified at +65°C or less. Aging may exceed the specification for prolonged temperatures above +65°C. Typically, aging is greatest the first year after manufacture, decreasing in subsequent years.
- 2. The center frequency, f_C , is measured at the minimum insertion loss point, IL_{MIN} , with the resonator in the 50 Ω test system (VSWR \leq 1.2:1). The shunt inductance, L_{TEST} , is tuned for parallel resonance with C_O at f_C . Typically, $f_{Oscillator}$ or $f_{transmitter}$ is approximately equal to the resonator f_C .
- 3. Typically, equipment utilizing this device requires emissions testing and government approval, which is the responsibility of the equipment manufacturer.
- 4. Unless noted otherwise, case temperature TC = +25°C±2°C.
- 5. The design, manufacturing process, and specifications of this device are subject to change without notice.
- 6. Derived mathematically from one or more of the following directly measured parameters: f_C , IL, 3 dB bandwidth, f_C versus T_C , and C_O .
- 7. Turnover temperature, T_O , is the temperature of maximum (or turnover) frequency, f_O . The nominal frequency at any case temperature, T_O , may be calculated from: $f = f_O [1 FTC (T_O T_C)2]$. Typically oscillator T_O is approximately equal to the specified resonator T_O .
- 8. This equivalent RLC model approximates resonator performance near the resonant frequency and is provided for reference only. The capacitance C_O is the static (nonmotional) capacitance between the two terminals measured at low frequency (10 MHz) with a capacitance meter. The measurement includes parasitic capacitance with "NC" pads unconnected. Case parasitic capacitance is approximately 0.05 pF. Transducer parallel capacitance can by calculated as: $C_P \approx C_O 0.05$ pF.

NEDI NDR433S2

4. Reliability

4.1 Mechanical Shock: The components shall remain within the electrical specifications after 1000 shocks, acceleration 392m/s², duration 6 milliseconds.

- 4.2 Vibration Fatigue: The components shall remain within the electrical specifications after loaded vibration at 20 Hz , amplitude 1.5mm , for 2 hours.
- 4.3 Terminal Strength: The components shall remain within the electrical specifications after pulled 2 Kgs weight for 10 seconds towards an axis of each terminal.
- 4.4 High Temperature Storage: The components shall remain within the electrical specifications after being kept at the 85°C±2°C for 48 hours, then kept at room temperature for 2 hours.
- 4.5 Low Temperature Storage: The components shall remain within the electrical specifications after being kept at the -25 $^{\circ}$ C ±2 $^{\circ}$ C for 48 hours ,then kept room temperature for 2 hours.
- 4.6 Temperature Cycle: The components shall remain within the electrical specifications after 5 cycles of high and low temperature testing(one cycle: 80° C for 30 minutes \rightarrow 25 °C for 5 minutes \rightarrow -25 °C for 30 minutes) than kept at room temperature for 2 hours.
- 4.7 Solder-heat Resistance: The components shall remain within the electrical specifications after dipped in the solder at 260°C for 10±1seconds, then kept at room temperature for 2 hours. (Terminal must be dipped leaving 1.5 mm from the case).
- 4.8 Solder ability: Solder ability of terminal shall be kept at more than 80% after dipped in the solder flux at 230° C $\pm 5^{\circ}$ C for 5 ± 1 seconds.

5. Remarks

- 5.1 Static voltage
 - Static voltage between signal load & ground may cause deterioration & destruction of the component. Please avoid static voltage.
- 5.2 Ultrasonic cleaning
 - Ultrasonic vibration may cause deterioration & destruction of the component. Please avoid ultrasonic cleaning.
- 5.3 Soldering
 - Only leads of component may be soldered. Please avoid soldering another part of component.