

T09113

S

The TQ9113 IF/AGC (Intermediate Frequency/Automatic Gain Control) Amplifier is part of TriQuint's RFIC Downconverter Building Block family. Intended for use as an Automatic Gain Control Amplifier in an IF stage, a wide range of gain control is available. The TQ9113 provides wide-bandwidth operation from a standard +5 V power supply. Its low current consumption and small, plastic surface-mount package are ideally suited for low-cost hand-held and batterypowered applications.

Electrical Specifications

Test Conditions: V_{DD} = +5 V, T_A = 25 °C, Frequency = 100 MHz

Parameter ⁽¹⁾	Min.	Тур.	Max.	Units
Frequency of Operation	30		500	MHz
Gain	12.0	15.0		dB
AGC Range ⁽²⁾		30		dB
DC Supply Current		2.2	3.0	mA
Gain Control Voltage (3)	0		5	V

Notes: 1. Min/Max values listed are production tested.

2. $V_{AGC} = 0$ V, Max. Gain; $V_{AGC} = +5$ V, Min. Gain 3. Voltages which produce Min. and Max. Gain

Features

- Single + 5 V supply
- * 2.2 mA supply current
- SO-8 plastic package
- 30 500 MHz operation
- 15 dB gain @ 100 MHz
- * 30 dB AGC range

Applications

- GPS (Global Positioning Systems)
- Cellular Communications
- * Spread-Spectrum Receivers

Electrical Specifications

Test Conditions: V_{DD} = +5 V, T_A = 25 °C, Frequency = 100 MHz

Parameters	Condition	Min.	Тур.	Max.	Units
Frequency of Operation		30		500	MHz
Gain	Freq. = 100 MHz	12.0	15.0		dB
Gain	Freq. = 500 MHz		8		dB
Noise Figure	50 Ω System		6.0		dB
AGC Range	Max. gain = 15 dB		30		dB
Output 3rd Order Intercept			-3.5		dBm
Output 1dB Gain Compression			-15		dBm
DC Supply Current			2.2	3.0	mA
Supply Voltage		4.5	5.0	5.5	V

Test Circuit

Test Conditions:	$V_{DD} = +$	5 V, T _A	= 25 ° C,	V _{AGC} = 0 V
-------------------------	--------------	---------------------	-----------	------------------------

Freq (MHz)	1811	∠\$11	15211	 \$21	I <i>S12</i> I	Z S12	18221		Gain (dB)
50	0.971	-2	5.50	-172	0.0008	102	0.360	4	14.8
100	0.954	-2	5.33	169	0.0007	-151	0.368	9	14.5
200 .	0.941	-3	4.60	148	0.0013	146	0.401	14	13.3
300	0.916	-3	3.84	135	0.0035	134	0.428	17	11.7
400	0.891	-3	3.18	126	0.0037	126	0.445	19	10.0
500	0.874	-4	2.71	120	0.00493	116	0.450	20	8.7

Input and Output Impedance

ŝ

Gain / NF vs. Frequency vs. Temperature

P1dB and IP3 vs. Frequency vs. Temperature

AGC Transfer Curve vs. Temperature

P1dB and IP3 vs. Frequency vs. Load Resistor

Standard Output Circuit

8906518 0001508 T52 🔳

Pin Descriptions

Pin Name	Pin #	Description
V _{DD}	1	+5 V Power Supply. Decouple with 0.01 uF within 0.25 inch of package.
IN	3	Input is DC-blocked. VSWR and gain may be improved with external impedance matching, if desired.
OUT	6	Output port requires a DC block. Output gain compression point and third order intercept point can be increased by the addition of a shunt resistor. (See note on output circuit options.)
V _{AGC}	8	Gain control input. 0 V = maximum gain, +5 V = minimum gain. Slope of gain vs. voltage transfer function can be decreased by the addition of a series resistance in the V _{AGC} line. (See schematic.)
GND	2, 4, 5, 7	Ground connection. Keep physically short for stability and performance. Pins are internally connected.

Note: Refer to block diagram for pin location

TQ9113 Pinout

Circuit Schematic

ŝ

Absolute Maximum Ratings

Parameter Min. Typ.			Max. Units		
DC Power Supply			7	۷	
V _{AGC}			7	٧	
Power Dissipation			70	mW	
Input Power			+10	dBm	
Storage Temperature	-55		+150	°C	
Operating Temperature	-40		+85	°C	

Note: ESD-sensitive device - Class 1

SO-8 Plastic Package

The information provided herein is believed to be reliable; TriQuint assumes no responsibility for inaccuracies or omissions. TriQuint assumes no responsibility for the use of this information, and all such information shall be enlirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. TriQuint does not authorize or warrant any TriQuint product for use in life-support devices and/or systems.

Copyright © 1995 TriQuint Semiconductor, Inc. All rights reserved.

Revision D.1, June 21, 1995

■ 840PST8 000TST0 POO |

