3 Volt GaAs SPDT Switch DC - 2.0 GHz

Features

- Low Insertion Loss: <0.7 dB @ 900 MHz
- Low Power Consumption: $<10\mu A$ @ =3 VDC
- Very High Intercept Point: 52 dBm IP₃
- Both Positive and Negative 3 to 8 V Control
- Low Cost SOT-26 Package

Description

M/A-COM's SW-395 is a GaAs monolithic switch in a low cost SOT-26 surface mount plastic package. The SW-395 is ideally suited for applications where very low power consumption, low intermodulation products, very small size and low cost are Typical application is an internal/external antenna required. select switch for portable telephones and data radios. In addition, because of its low loss, good isolation and inherent speed, the SW-395 can be used as a conventional T/R switch or as an antenna diversity switch. The SW-395 can be used in power applications up to 0.5 Watts in systems such as cellular, PCN, GSM an other analog/digital wireless communications systems.

The SW-395 is fabricated using a mature 1-micron gate length GaAs MESFET process. The process features full chip passivation for increased performance and reliability.

SOT-26¹

1. Dimensions are in: inches/mm

Ordering Information

Part Number	Package	
SW-395 PIN	SOT-26 Plastic Package	
SW-395TR	Forward Tape and Reel ¹	

1. Refer to Application Note M513 for reel size information.

Electrical Specifications: $T_A = +25^{\circ}C^1$

Parameter	Test Conditions	Units	Min.	Тур.	Max.	
Insertion Loss	DC - 1.0 GHz		dB		0.7	0.9
	1.0 - 2.0 GHz	dB		0.8	1.0	
Isolation	DC - 1.0 GHz		dB	23	25	
	1.0 - 2.0 GHz	dB	17	19		
VSWR	DC - 2.0 GHz			1.3:1		
1 dB Compression	Input Power (3V Control)	0.5 GHz	dBm		27	
	Input Power (5V Control)	Input Power (5V Control) 0.5 GHz			28	
	Input Power (3V Control)	0.05 GHz	dBm		16	
	Input Power (5V Control)	Input Power (5V Control) 0.05 GHz			18	
T_{rise}, T_{fall}	10% to 90% RF, 90% to 10% RF		μS		7	
T _{on} , T _{off}	50% Control to 90% RF, Control to 10% RF		μS		8	
Transients	In-band	m۷		38		
Input IP ₂	2-Tone, 5 MHz spacing, 3 V Control	0.05 GHz	dBm		61	
	+10 dBm each	0.5 GHz	dBm		71	
Input IP ₃	2-Tone, 5 MHz spacing, 3 V Control	0.05 GHz	dBm		48	
	+10 dBm each	0.5 GHz	dBm		52	

All measurements at 1 GHz in a 50Ω system with a 3V control unless otherwise specified. Loss varies at 0.003 dB/°C.

V2.00

Absolute Maximum Ratings¹

Parameter	Absolute Maximum		
Input Power	+33 dBm		
Operating Voltage	+8.5 Volts		
Operating Temperature	-40°C to +85°C		
Storage Temperature	-65°C to +150°C		

Exceeding any one or a combination of these limits may cause permanent damage.

Truth Table

110.01								
Mode (Control)	Control A	Control B	RFC - RF1	RFC - RF2				
Positive ¹	0±0.2V	+3V to +8V	Off	On				
	+3V to +8V	0±0.2V	On	Off				
Positive/	-Vc±0.2V	+Vc	On	Off				
Negative ^{1,2}	+Vc	-Vc±0.2V	Off	On				
Negative ³	0±0.2V	-3V to -8V	On	Off				
	-3V to -8V	0±0.2V	Off	On				

- 1. External DC blocking capacitors are required on all RF ports.
- |-Vc|≤ 8 V.
- If negative control is used, DC blocking capacitors are not required on RF ports.

Functional Schematic¹

1. DC blocking capacitors not required if negative control voltage is used.

Typical Performance Curves

V2.00

